These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 7417789)
1. Mesolimbicocortical dopamine terminal fields are necessary for normal locomotor and investigatory exploration in rats. Fink JS; Smith GP Brain Res; 1980 Oct; 199(2):359-84. PubMed ID: 7417789 [TBL] [Abstract][Full Text] [Related]
2. Unilateral mesolimbicocortical dopamine denervation decreases locomotion in the open field and after amphetamine. Jeste DV; Smith GP Pharmacol Biochem Behav; 1980 Mar; 12(3):453-7. PubMed ID: 7393946 [TBL] [Abstract][Full Text] [Related]
3. Mesolimbic and mesocortical dopaminergic neurons are necessary for normal exploratory behavior in rats. Fink JS; Smith GP Neurosci Lett; 1980 Apr; 17(1-2):61-5. PubMed ID: 6820483 [TBL] [Abstract][Full Text] [Related]
4. Relationships between selective denervation of dopamine terminal fields in the anterior forebrain and behavioral responses to amphetamine and apomorphine. Fink JS; Smith GP Brain Res; 1980 Nov; 201(1):107-27. PubMed ID: 7191345 [TBL] [Abstract][Full Text] [Related]
5. Comparative effects of infusions of 6-hydroxydopamine into nucleus accumbens and anterolateral hypothalamus induced by 6-hydroxydopamine on the response to dopamine agonists, body weight, locomotor activity and measures of exploration in the rat. Winn P; Robbins TW Neuropharmacology; 1985 Jan; 24(1):25-31. PubMed ID: 3920545 [TBL] [Abstract][Full Text] [Related]
6. Effects of intra-accumbens dopaminergic grafts on behavioral deficits induced by 6-OHDA lesions of the nucleus accumbens or A10 dopaminergic neurons: a comparison. Herman JP; Choulli K; Abrous N; Dulluc J; Le Moal M Behav Brain Res; 1988 Jul; 29(1-2):73-83. PubMed ID: 3401324 [TBL] [Abstract][Full Text] [Related]
7. Behavioural and biochemical effects of dopamine and noradrenaline depletion within the medial prefrontal cortex of the rat. Carter CJ; Pycock CJ Brain Res; 1980 Jun; 192(1):163-76. PubMed ID: 7189685 [TBL] [Abstract][Full Text] [Related]
8. 6-hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding. Breese GR; Duncan GE; Napier TC; Bondy SC; Iorio LC; Mueller RA J Pharmacol Exp Ther; 1987 Jan; 240(1):167-76. PubMed ID: 3100767 [TBL] [Abstract][Full Text] [Related]
9. The relationship between striatal and mesolimbic dopamine dysfunction and the nature of circling responses following 6-hydroxydopamine and electrolytic lesions of the ascending dopamine systems of rat brain. Costall B; Marsden CD; Naylor RJ; Pycock CJ Brain Res; 1976 Dec; 118(1):87-113. PubMed ID: 990957 [TBL] [Abstract][Full Text] [Related]
10. Suppression of noradrenergic innervation compensates for behavioral deficits induced by lesion of dopaminergic terminals in the lateral septum. Taghzouti K; Le Moal M; Simon H Brain Res; 1991 Jun; 552(1):124-8. PubMed ID: 1717110 [TBL] [Abstract][Full Text] [Related]
11. Amygdalar noradrenergic and dopaminergic mechanisms in the regulation of hunger and thirst-motivated behavior. Lénárd L; Hahn Z Brain Res; 1982 Feb; 233(1):115-32. PubMed ID: 6800562 [TBL] [Abstract][Full Text] [Related]
12. Mesolimbic dopamine neurons: effects of 6-hydroxydopamine-induced destruction and receptor blockade on drug-induced rotation of rats. Kelly PH; Moore KE Psychopharmacology (Berl); 1977 Nov; 55(1):35-41. PubMed ID: 414259 [TBL] [Abstract][Full Text] [Related]
13. Effect of injections of 6-OHDA into either nucleus accumbens septi or frontal cortex on spontaneous and drug-induced activity. Joyce EM; Stinus L; Iversen SD Neuropharmacology; 1983 Sep; 22(9):1141-5. PubMed ID: 6415508 [TBL] [Abstract][Full Text] [Related]
14. Age-dependent effects of 6-hydroxydopamine on locomotor activity in the rat. Erinoff L; MacPhail RC; Heller A; Seiden LS Brain Res; 1979 Mar; 164():195-205. PubMed ID: 427556 [TBL] [Abstract][Full Text] [Related]
15. Hyperactivity and hypoactivity produced by lesions to the mesolimbic dopamine system. Koob GF; Stinus L; Le Moal M Behav Brain Res; 1981 Nov; 3(3):341-59. PubMed ID: 6796098 [TBL] [Abstract][Full Text] [Related]
16. Magnitude and duration of hyperactivity following neonatal 6-hydroxydopamine is related to the extent of brain dopamine depletion. Miller FE; Heffner TG; Kotake C; Seiden LS Brain Res; 1981 Dec; 229(1):123-32. PubMed ID: 6796194 [TBL] [Abstract][Full Text] [Related]
17. Anatomical analysis of the involvement of mesolimbocortical dopamine in the locomotor stimulant actions of d-amphetamine and apomorphine. Clarke PB; Jakubovic A; Fibiger HC Psychopharmacology (Berl); 1988; 96(4):511-20. PubMed ID: 3149775 [TBL] [Abstract][Full Text] [Related]
18. Partial protection by desmethylimipramine of the mesocortical dopamine neurones from the neurotoxic effect of 6-hydroxydopamine injected in ventral mesencephalic tegmentum. The role of noradrenergic innervation. Herve D; Studler JM; Blanc G; Glowinski J; Tassin JP Brain Res; 1986 Sep; 383(1-2):47-53. PubMed ID: 3094831 [TBL] [Abstract][Full Text] [Related]
19. Intraaccumbens dopaminergic lesion suppresses desipramine effects in the forced swim test but not in the neuronal activity of lateral septal nucleus. Gutiérrez-García AG; Contreras CM; Díaz-Meza JL; Bernal-Morales B; Rodríguez-Landa JF; Saavedra M Prog Neuropsychopharmacol Biol Psychiatry; 2003 Aug; 27(5):809-18. PubMed ID: 12921914 [TBL] [Abstract][Full Text] [Related]
20. Ascending catecholamine pathways and amphetamine-induced locomotor activity: importance of dopamine and apparent non-involvement of norepinephrine. Roberts DC; Zis AP; Fibiger HC Brain Res; 1975 Aug; 93(3):441-54. PubMed ID: 1236760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]