These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes. Galla HJ; Hartmann W; Theilen U; Sackmann E J Membr Biol; 1979 Jul; 48(3):215-36. PubMed ID: 40032 [TBL] [Abstract][Full Text] [Related]
3. Lateral and transversal diffusion and phase transitions in erythrocyte membranes. An excimer fluorescence study. Galla HJ; Luisetti J Biochim Biophys Acta; 1980 Feb; 596(1):108-17. PubMed ID: 7353003 [TBL] [Abstract][Full Text] [Related]
4. Evidence that pyrene excimer formation in membranes is not diffusion-controlled. Blackwell MF; Gounaris K; Barber J Biochim Biophys Acta; 1986 Jun; 858(2):221-34. PubMed ID: 3718977 [TBL] [Abstract][Full Text] [Related]
5. Lateral organization of pyrene-labeled lipids in bilayers as determined from the deviation from equilibrium between pyrene monomers and excimers. Barenholz Y; Cohen T; Haas E; Ottolenghi M J Biol Chem; 1996 Feb; 271(6):3085-90. PubMed ID: 8621705 [TBL] [Abstract][Full Text] [Related]
6. An optical study of the exchange kinetics of membrane bound molecules. Sengupta P; Sackmann E; Kühnle W; Scholz HP Biochim Biophys Acta; 1976 Jul; 436(4):869-78. PubMed ID: 952921 [TBL] [Abstract][Full Text] [Related]
7. Temperature, pressure and cholesterol effects on bilayer fluidity; a comparison of pyrene excimer/monomer ratios with the steady-state fluorescence polarization of diphenylhexatriene in liposomes and microsomes. Macdonald AG; Wahle KW; Cossins AR; Behan MK Biochim Biophys Acta; 1988 Feb; 938(2):231-42. PubMed ID: 3342234 [TBL] [Abstract][Full Text] [Related]
8. Transbilayer asymmetry of pyrene mobility in human spherocytic red cell membranes. Celedon G; Behn C; Montalar Y; Bagnara M; Sotomayor CP Biochim Biophys Acta; 1992 Mar; 1104(2):243-9. PubMed ID: 1547261 [TBL] [Abstract][Full Text] [Related]
9. Dipyrenylphosphatidylcholines as membrane fluidity probes. Relationship between intramolecular and intermolecular excimer formation rates. Vauhkonen M; Sassaroli M; Somerharju P; Eisinger J Biophys J; 1990 Feb; 57(2):291-300. PubMed ID: 2317551 [TBL] [Abstract][Full Text] [Related]
10. Pyrene-labeled gangliosides: micelle formation in aqueous solution, lateral diffusion, and thermotropic behavior in phosphatidylcholine bilayers. Ollmann M; Schwarzmann G; Sandhoff K; Galla HJ Biochemistry; 1987 Sep; 26(18):5943-52. PubMed ID: 3676298 [TBL] [Abstract][Full Text] [Related]
11. Phospholipid lateral organization in synthetic membranes as monitored by pyrene-labeled phospholipids: effects of temperature and prothrombin fragment 1 binding. Jones ME; Lentz BR Biochemistry; 1986 Feb; 25(3):567-74. PubMed ID: 3754153 [TBL] [Abstract][Full Text] [Related]
12. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes. Barenholz Y; Cohen T; Korenstein R; Ottolenghi M Biophys J; 1991 Jul; 60(1):110-24. PubMed ID: 1883931 [TBL] [Abstract][Full Text] [Related]
13. Use of fluorescent probes that form intramolecular excimers to monitor structural changes in model and biological membranes. Melnick RL; Haspel HC; Goldenberg M; Greenbaum LM; Weinstein S Biophys J; 1981 Jun; 34(3):499-515. PubMed ID: 7248471 [TBL] [Abstract][Full Text] [Related]
14. A milling crowd model for local and long-range obstructed lateral diffusion. Mobility of excimeric probes in the membrane of intact erythrocytes. Eisinger J; Flores J; Petersen WP Biophys J; 1986 May; 49(5):987-1001. PubMed ID: 3778578 [TBL] [Abstract][Full Text] [Related]
15. Lateral diffusion, order parameter and phase transition in phospholipid bilayer membranes containing tocopheryl acetate. Schmidt D; Steffen H; Planta C Biochim Biophys Acta; 1976 Aug; 443(1):1-9. PubMed ID: 182260 [TBL] [Abstract][Full Text] [Related]
16. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids. Lehtonen JY; Holopainen JM; Kinnunen PK Biophys J; 1996 Apr; 70(4):1753-60. PubMed ID: 8785334 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes. Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416 [TBL] [Abstract][Full Text] [Related]
18. Pressure variation of the lateral diffusion in lipid bilayer membranes. Müller HJ; Galla HJ Biochim Biophys Acta; 1983 Sep; 733(2):291-4. PubMed ID: 6882763 [TBL] [Abstract][Full Text] [Related]
19. Partitioning of pyrene-labeled phospho- and sphingolipids between ordered and disordered bilayer domains. Koivusalo M; Alvesalo J; Virtanen JA; Somerharju P Biophys J; 2004 Feb; 86(2):923-35. PubMed ID: 14747328 [TBL] [Abstract][Full Text] [Related]
20. Fluorescent probes for asymmetric lipid bilayers: synthesis and properties in phosphatidyl choline liposomes and erythrocyte membranes. Browning JL; Nelson DL J Membr Biol; 1979 Aug; 49(1):75-103. PubMed ID: 480339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]