These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7418730)

  • 1. Effect of removal and substitution of potassium ions on the adrenergic and cholinergic reactivity in canine femoral artery.
    De Mey J; Vanhoutte PM
    Eur J Pharmacol; 1980 Oct; 67(1):159-64. PubMed ID: 7418730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between Na+,K+ exchanges and the direct inhibitory effect of acetylcholine on canine femoral arteries.
    De Mey JG; Vanhoutte PM
    Circ Res; 1980 Jun; 46(6):826-36. PubMed ID: 7379248
    [No Abstract]   [Full Text] [Related]  

  • 3. Na+-K+ exchanges in canine arterial and venous smooth muscle.
    De Mey JG; Vanhoutte PM
    Am J Physiol; 1982 Oct; 243(4):H551-9. PubMed ID: 6812438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries.
    De Mey JG; Vanhoutte PM
    J Physiol; 1981 Jul; 316():347-55. PubMed ID: 7320872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in K+-induced relaxation of canine femoral and renal arteries.
    Bukoski RD; Seidel CL; Allen JC
    Am J Physiol; 1983 Oct; 245(4):H598-603. PubMed ID: 6624928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium relaxation of vascular smooth muscle from DOCA hypertensive pigs.
    Webb RC
    Hypertension; 1982; 4(5):609-19. PubMed ID: 6286478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of inhibitors of arachidonic acid metabolism and calcium entry on responses to acetylcholine, potassium and norepinephrine in the isolated canine saphenous vein.
    Rimele TJ; Vanhoutte PM
    J Pharmacol Exp Ther; 1983 Jun; 225(3):720-8. PubMed ID: 6408242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ouabain on isolated cerebral and femoral arteries of the cat: a functional and biochemical study.
    Marín J; Sánchez-Ferrer CF; Salaices M
    Br J Pharmacol; 1988 Jan; 93(1):43-52. PubMed ID: 2832027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery.
    De Mey JG; Claeys M; Vanhoutte PM
    J Pharmacol Exp Ther; 1982 Jul; 222(1):166-73. PubMed ID: 6806467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium-dependent hyperpolarization of canine coronary smooth muscle.
    Feletou M; Vanhoutte PM
    Br J Pharmacol; 1988 Mar; 93(3):515-24. PubMed ID: 2453240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium-induced relaxation in vascular smooth muscle of ground squirrels and rats.
    Harker CT; Webb RC
    Am J Physiol; 1987 Jan; 252(1 Pt 2):R134-9. PubMed ID: 3812724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation of vascular smooth muscle by isoproterenol, dibutyryl-cyclic AMP and theophylline.
    Webb RC; Bohr DF
    J Pharmacol Exp Ther; 1981 Apr; 217(1):26-35. PubMed ID: 6259328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anoxia and endothelium-dependent reactivity of the canine femoral artery.
    De Mey JG; Vanhoutte PM
    J Physiol; 1983 Feb; 335():65-74. PubMed ID: 6875896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective production of endothelium-derived nitric oxide in canine femoral veins.
    Miller VM
    Am J Physiol; 1991 Sep; 261(3 Pt 2):H677-82. PubMed ID: 1679603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contractions of the canine coronary artery in calcium-free solution.
    Rooke TW; Rimele TJ; Vanhoutte PM
    Am J Physiol; 1984 Aug; 247(2 Pt 2):H259-63. PubMed ID: 6589964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of potassium-induced relaxation in vascular smooth muscle of tiger salamanders and rats.
    Malvin GM; Webb RC
    Am J Physiol; 1984 Jul; 247(1 Pt 2):R100-5. PubMed ID: 6331206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of thrombin on isolated canine blood vessels.
    Janssens WJ; Verhaeghe RH
    Blood Vessels; 1982; 19(3):126-34. PubMed ID: 7074226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular basis of nitroprusside-induced relaxation of graded responses to norepinephrine and potassium in canine renal arteries.
    Karaki H; Hester RK; Weiss GB
    Arch Int Pharmacodyn Ther; 1980 Jun; 245(2):198-210. PubMed ID: 7406605
    [No Abstract]   [Full Text] [Related]  

  • 19. Contractile and relaxant responses of diabetic dog femoral arteries.
    Gebremedhin D; Hadházy P; Koltai MZ; Pogátsa G
    Acta Physiol Hung; 1988; 71(2):213-7. PubMed ID: 3389165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications for repetitive application of acetylcholine in the determination of the mechanisms of endothelium-dependent relaxation.
    Hogan M; O'Malley KD; Healy J; O'Brien S; Bund SJ
    Vascul Pharmacol; 2005 Oct; 43(4):227-33. PubMed ID: 16126461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.