These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 7418730)
1. Effect of removal and substitution of potassium ions on the adrenergic and cholinergic reactivity in canine femoral artery. De Mey J; Vanhoutte PM Eur J Pharmacol; 1980 Oct; 67(1):159-64. PubMed ID: 7418730 [TBL] [Abstract][Full Text] [Related]
2. Interaction between Na+,K+ exchanges and the direct inhibitory effect of acetylcholine on canine femoral arteries. De Mey JG; Vanhoutte PM Circ Res; 1980 Jun; 46(6):826-36. PubMed ID: 7379248 [No Abstract] [Full Text] [Related]
3. Na+-K+ exchanges in canine arterial and venous smooth muscle. De Mey JG; Vanhoutte PM Am J Physiol; 1982 Oct; 243(4):H551-9. PubMed ID: 6812438 [TBL] [Abstract][Full Text] [Related]
4. Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries. De Mey JG; Vanhoutte PM J Physiol; 1981 Jul; 316():347-55. PubMed ID: 7320872 [TBL] [Abstract][Full Text] [Related]
5. Differences in K+-induced relaxation of canine femoral and renal arteries. Bukoski RD; Seidel CL; Allen JC Am J Physiol; 1983 Oct; 245(4):H598-603. PubMed ID: 6624928 [TBL] [Abstract][Full Text] [Related]
7. Effects of inhibitors of arachidonic acid metabolism and calcium entry on responses to acetylcholine, potassium and norepinephrine in the isolated canine saphenous vein. Rimele TJ; Vanhoutte PM J Pharmacol Exp Ther; 1983 Jun; 225(3):720-8. PubMed ID: 6408242 [TBL] [Abstract][Full Text] [Related]
8. Effects of ouabain on isolated cerebral and femoral arteries of the cat: a functional and biochemical study. Marín J; Sánchez-Ferrer CF; Salaices M Br J Pharmacol; 1988 Jan; 93(1):43-52. PubMed ID: 2832027 [TBL] [Abstract][Full Text] [Related]
9. Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery. De Mey JG; Claeys M; Vanhoutte PM J Pharmacol Exp Ther; 1982 Jul; 222(1):166-73. PubMed ID: 6806467 [TBL] [Abstract][Full Text] [Related]
11. Potassium-induced relaxation in vascular smooth muscle of ground squirrels and rats. Harker CT; Webb RC Am J Physiol; 1987 Jan; 252(1 Pt 2):R134-9. PubMed ID: 3812724 [TBL] [Abstract][Full Text] [Related]
12. Relaxation of vascular smooth muscle by isoproterenol, dibutyryl-cyclic AMP and theophylline. Webb RC; Bohr DF J Pharmacol Exp Ther; 1981 Apr; 217(1):26-35. PubMed ID: 6259328 [TBL] [Abstract][Full Text] [Related]
13. Anoxia and endothelium-dependent reactivity of the canine femoral artery. De Mey JG; Vanhoutte PM J Physiol; 1983 Feb; 335():65-74. PubMed ID: 6875896 [TBL] [Abstract][Full Text] [Related]
14. Selective production of endothelium-derived nitric oxide in canine femoral veins. Miller VM Am J Physiol; 1991 Sep; 261(3 Pt 2):H677-82. PubMed ID: 1679603 [TBL] [Abstract][Full Text] [Related]
15. Contractions of the canine coronary artery in calcium-free solution. Rooke TW; Rimele TJ; Vanhoutte PM Am J Physiol; 1984 Aug; 247(2 Pt 2):H259-63. PubMed ID: 6589964 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of potassium-induced relaxation in vascular smooth muscle of tiger salamanders and rats. Malvin GM; Webb RC Am J Physiol; 1984 Jul; 247(1 Pt 2):R100-5. PubMed ID: 6331206 [TBL] [Abstract][Full Text] [Related]