These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 7418730)

  • 21. Effect of reserpine on relaxant responses of canine femoral arterial strips.
    Cauvin CA; Devia CJ; Kirkendol PL
    Clin Exp Pharmacol Physiol; 1982; 9(5):511-4. PubMed ID: 6814801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectrum of altered reactivity of isolated cerebral arteries following subarachnoid haemorrhage--response to potassium, pH, noradrenaline, 5-hydroxytryptamine, and sodium loading.
    Pickard JD; Perry S
    J Cereb Blood Flow Metab; 1984 Dec; 4(4):599-609. PubMed ID: 6501446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium-dependency of the direct relaxant effect of acetylcholine on canine femoral artery.
    De Mey JG; Vanhoutte PM
    Arch Int Pharmacodyn Ther; 1978 Dec; 236(2):296-7. PubMed ID: 747477
    [No Abstract]   [Full Text] [Related]  

  • 24. Potassium-free solution prevents the action but not the release of endothelium-derived relaxing factor.
    Rubanyi GM; Vanhoutte PM
    Eur J Pharmacol; 1988 Jan; 145(3):351-5. PubMed ID: 3258243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of nitric oxide and potassium channels in the cholinergic relaxation of rabbit ear and femoral arteries: effects of cooling.
    García-Villalón AL; Fernández N; Monge L; García JL; Gómez B; Diéguez G
    J Vasc Res; 1995; 32(6):387-97. PubMed ID: 8562811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric-oxide-related and non-related mechanisms in the acetylcholine-evoked relaxations in cat femoral arteries.
    Alonso MJ; Salaices M; Sánchez-Ferrer CF; Ponte A; López-Rico M; Marín J
    J Vasc Res; 1993; 30(6):339-47. PubMed ID: 7694666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endothelium-dependent relaxation of the pig aorta: relationship to stimulation of 86Rb efflux from isolated endothelial cells.
    Gordon JL; Martin W
    Br J Pharmacol; 1983 Jun; 79(2):531-41. PubMed ID: 6418245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potassium-induced vascular relaxation in two kidney-one clip, renal hypertensive rats.
    Webb RC; Cohen DM; Bohr DF
    Pflugers Arch; 1983 Jan; 396(1):72-8. PubMed ID: 6835809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endothelium-dependent contraction and relaxation of the human and canine internal mammary artery: studies on bypass graft vasospasm.
    Lin PJ; Pearson PJ; Schaff HV
    Surgery; 1991 Aug; 110(2):127-34; discussion 135. PubMed ID: 1858024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of acetylcholine and catecholamines on the smooth muscle cell of the porcine coronary artery.
    Ito Y; Kitamura K; Kuriyama H
    J Physiol; 1979 Sep; 294():595-611. PubMed ID: 512960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystalloid cardioplegia and hypothermia do not impair endothelium-dependent relaxation or damage vascular smooth muscle of epicardial coronary arteries.
    Evora PR; Pearson PJ; Schaff HV
    J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1365-74. PubMed ID: 1434718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of potassium relaxation of arterial muscle.
    Bonaccorsi A; Hermsmeyer K; Aprigliano O; Smith CB; Bohr DF
    Blood Vessels; 1977; 14(5):261-76. PubMed ID: 871531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of the endothelium to the response to anoxia in the canine femoral artery.
    De Mey JG; Vanhoutte PM
    Arch Int Pharmacodyn Ther; 1981 Oct; 253(2):325-6. PubMed ID: 7325771
    [No Abstract]   [Full Text] [Related]  

  • 34. Endothelium-dependent relaxation in response to adenosine diphosphate is impaired under poor runoff conditions in the canine femoral artery.
    Komori K; Ishii T; Mawatari K; Odashiro T; Itoh H; Okadome K; Sugimachi K
    J Surg Res; 1995 Mar; 58(3):302-6. PubMed ID: 7885027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Actions of vanadate on vascular tension and sodium pump activity in cat isolated cerebral and femoral arteries.
    Sánchez-Ferrer CF; Marín J; Lluch M; Valverde A; Salaices M
    Br J Pharmacol; 1988 Jan; 93(1):53-60. PubMed ID: 3349233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is nitric oxide the only endothelium-derived relaxing factor in canine femoral veins?
    Miller VM; Vanhoutte PM
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H1910-6. PubMed ID: 2513730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vascular actions of TA 3090, a novel analog of diltiazem: interaction with endothelium-dependent relaxation in canine femoral and coronary arteries.
    Rubanyi G; Iqbal A; Schwartz A; Vanhoutte PM
    J Pharmacol Exp Ther; 1991 Nov; 259(2):639-42. PubMed ID: 1941612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of tetraethylammonium-induced contraction in the canine coronary artery.
    Nishio M; Kigoshi S; Muramatsu I
    Pharmacology; 1986; 33(5):256-65. PubMed ID: 3025900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Bay K 8644 and nifedipine on femoral arteries of spontaneously hypertensive rats.
    Aoki K; Asano M
    Br J Pharmacol; 1986 May; 88(1):221-30. PubMed ID: 2423174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of noradrenaline and potassium ions on the electrical and contractile activity of coronary artery smooth muscle cells].
    Nikitina EI
    Fiziol Zh SSSR Im I M Sechenova; 1980 Oct; 66(10):1493-8. PubMed ID: 7439440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.