These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 7419472)

  • 41. Cloning of m-fluorophenylalanine-resistant gene and mutational analysis of feedback-resistant prephenate dehydratase from Corynebacterium glutamicum.
    Chan MS; Hsu WH
    Biochem Biophys Res Commun; 1996 Feb; 219(2):537-42. PubMed ID: 8605023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic breeding of L-tyrosine producer from Brevibacterium lactofermentum.
    Ito H; Sakurai S; Tanaka T; Sato K; Enei H
    Agric Biol Chem; 1990 Mar; 54(3):699-705. PubMed ID: 1369436
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mazethramycin, a new member of anthramycin group antibiotics.
    Kunimoto S; Masuda T; Kanbayashi N; Hamada M; Naganawa H; Miyamoto M; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1980 Jun; 33(6):665-7. PubMed ID: 7419478
    [No Abstract]   [Full Text] [Related]  

  • 44. Regulation of aromatic amino acid biosynthesis in microorganisms.
    Lingens F
    Acta Microbiol Acad Sci Hung; 1976; 23(2):161-6. PubMed ID: 9782
    [No Abstract]   [Full Text] [Related]  

  • 45. Chorismate mutase/prephenate dehydratase from Escherichia coli K12. Binding studies with the allosteric effector phenylalanine.
    Gething MJ; Davidson BE
    Eur J Biochem; 1978 May; 86(1):165-74. PubMed ID: 26562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. L-Phenylalanine and L-tyrosine catabolism by selected Streptomyces species.
    Pometto AL; Crawford DL
    Appl Environ Microbiol; 1985 Mar; 49(3):727-9. PubMed ID: 3994376
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prephenate dehydrogenase from Pseudomonas aeruginosa is a regulated component of the channel-shuttle mechanism controlling tyrosine-phenylalanine synthesis.
    Stenmark-Cox S; Jensen RA
    Arch Biochem Biophys; 1975 Apr; 167(2):540-6. PubMed ID: 804859
    [No Abstract]   [Full Text] [Related]  

  • 48. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain.
    Zhang S; Wilson DB; Ganem B
    Biochemistry; 2000 Apr; 39(16):4722-8. PubMed ID: 10769128
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli.
    Huang J; Lin Y; Yuan Q; Yan Y
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):655-9. PubMed ID: 25645094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phenylalanine- and tyrosine-dependent production of enterobactin in Escherichia coli.
    Foster MS; Carroll JN; Niederhoffer EC
    FEMS Microbiol Lett; 1994 Mar; 117(1):79-83. PubMed ID: 8181712
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic and regulatory properties of arogenate dehydratase in seedlings of Sorghum bicolor (L.) Moench.
    Siehl DL; Conn EE
    Arch Biochem Biophys; 1988 Feb; 260(2):822-9. PubMed ID: 3124763
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The possible involvement of a plasmid(s) in actinomycin synthesis by Streptomyces parvulus and Streptomyces antibioticus.
    Ochi K; Katz E
    J Antibiot (Tokyo); 1978 Nov; 31(11):1143-8. PubMed ID: 82552
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12.
    Hudson GS; Davidson BE
    J Mol Biol; 1984 Dec; 180(4):1023-51. PubMed ID: 6396419
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of amino acids on thaxtomin A biosynthesis by Streptomyces scabies.
    Lauzier A; Goyer C; Ruest L; Brzezinski R; Crawford DL; Beaulieu C
    Can J Microbiol; 2002 Apr; 48(4):359-64. PubMed ID: 12030709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A tryptophan hydroxylase inhibitor produced by a streptomycete: 2,5-dihydro-L-phenylalanine.
    Okabayashi K; Morishima H; Hamada M; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1977 Aug; 30(8):675-7. PubMed ID: 908667
    [No Abstract]   [Full Text] [Related]  

  • 56. Conversion of phenylalanine into tyrosine by portulaca callus.
    Endress R
    Plant Physiol; 1981 Aug; 68(2):272-4. PubMed ID: 16661900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. C-C bond cleavage in biosynthesis of 4-alkyl-L-proline precursors of lincomycin and anthramycin cannot precede C-methylation.
    Kamenik Z; Gazak R; Kadlcik S; Steiningerova L; Rynd V; Janata J
    Nat Commun; 2018 Aug; 9(1):3167. PubMed ID: 30093642
    [No Abstract]   [Full Text] [Related]  

  • 58. Growth retardation and corneal vascularization with tyrosine and phenylalanine in a purified diet.
    NIVEN CF; WASHBURN MR; SPERLING GA
    Proc Soc Exp Biol Med; 1946 Oct; 63(1):106-8. PubMed ID: 20274283
    [No Abstract]   [Full Text] [Related]  

  • 59. Prevention of phenylalanine synthesis by tyrosine.
    BEERSTECHER E; SHIVE W
    J Biol Chem; 1947 Feb; 167(2):527-34. PubMed ID: 20285049
    [No Abstract]   [Full Text] [Related]  

  • 60. A DEFECT IN THE METABOLISM OF TYROSINE AND PHENYLALANINE IN PREMATURE INFANTS. III. DEMONSTRATION OF THE IRREVERSIBLE CONVERSION OF PHENYLALANINE TO TYROSINE IN THE HUMAN ORGANISM.
    Levine SZ; Dann M; Marples E
    J Clin Invest; 1943 Jul; 22(4):551-62. PubMed ID: 16695037
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.