These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 7419485)
1. Deep-water waves in the cochlea. de Boer E Hear Res; 1980 Aug; 3(2):97-108. PubMed ID: 7419485 [TBL] [Abstract][Full Text] [Related]
2. A cylindrical cochlea model: the bridge between two and three dimensions. de Boer E Hear Res; 1980 Aug; 3(2):109-31. PubMed ID: 7419481 [TBL] [Abstract][Full Text] [Related]
3. Power amplification in an active model of the cochlea--short-wave case. de Boer E J Acoust Soc Am; 1983 Feb; 73(2):577-9. PubMed ID: 6841797 [TBL] [Abstract][Full Text] [Related]
4. Method for computing motion in a two-dimensional cochlear model. Sondhi MM J Acoust Soc Am; 1978 May; 63(5):1468-77. PubMed ID: 690328 [TBL] [Abstract][Full Text] [Related]
5. Correspondence principle in cochlear mechanics. de Boer E J Acoust Soc Am; 1982 Jun; 71(6):1496-501. PubMed ID: 7108023 [TBL] [Abstract][Full Text] [Related]
6. Effect of opening and draining the cochlea. Steele CR; Zais JG J Acoust Soc Am; 1985 Jul; 78(1 Pt 1):84-9. PubMed ID: 4019911 [TBL] [Abstract][Full Text] [Related]
7. Validity of the Liouville--Green (or WKB) method for cochlear mechanics. de Boer E; Viergever MA Hear Res; 1982 Oct; 8(2):131-55. PubMed ID: 7142040 [TBL] [Abstract][Full Text] [Related]
8. Solving cochlear mechanics problems with higher-order differential equations. de Boer E; van Bienema E J Acoust Soc Am; 1982 Nov; 72(5):1427-34. PubMed ID: 7175030 [TBL] [Abstract][Full Text] [Related]
9. Short and long waves in the cochlea. de Boer E Hear Res; 1980 Jun; 2(3-4):465-73. PubMed ID: 7410251 [TBL] [Abstract][Full Text] [Related]
10. No sharpening? a challenge for cochlear mechanics. de Boer E J Acoust Soc Am; 1983 Feb; 73(2):567-73. PubMed ID: 6841795 [TBL] [Abstract][Full Text] [Related]
11. A model and analysis for the nonlinear amplification of waves in the cochlea. Fessel K; Holmes MH Math Biosci; 2018 Jul; 301():10-20. PubMed ID: 29382493 [TBL] [Abstract][Full Text] [Related]
12. Quantitative validation of cochlear models using the Liouville-Green approximation. Viergever MA; Diependaal RJ Hear Res; 1986; 21(1):1-15. PubMed ID: 3957793 [TBL] [Abstract][Full Text] [Related]
13. Finite difference solution of a two-dimensional mathematical model of the cochlea. Neely ST J Acoust Soc Am; 1981 May; 69(5):1386-91. PubMed ID: 7240568 [TBL] [Abstract][Full Text] [Related]
14. The mode-coupling Liouville-Green approximation for a two-dimensional cochlear model. Watts L J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2266-71. PubMed ID: 11108367 [TBL] [Abstract][Full Text] [Related]
15. Do forward- and backward-traveling waves occur within the cochlea? Countering the critique of Nobili et al. Shera CA; Tubis A; Talmadge CL J Assoc Res Otolaryngol; 2004 Dec; 5(4):349-59. PubMed ID: 15675000 [TBL] [Abstract][Full Text] [Related]
16. The cochlear amplifier as a standing wave: "squirting" waves between rows of outer hair cells? Bell A; Fletcher NH J Acoust Soc Am; 2004 Aug; 116(2):1016-24. PubMed ID: 15376668 [TBL] [Abstract][Full Text] [Related]
17. Fluid coupling in a discrete model of cochlear mechanics. Elliott SJ; Lineton B; Ni G J Acoust Soc Am; 2011 Sep; 130(3):1441-51. PubMed ID: 21895085 [TBL] [Abstract][Full Text] [Related]
18. Five decades of research on cochlear mechanics. Zwislocki JJ J Acoust Soc Am; 1980 May; 67(5):1679-85. PubMed ID: 7372924 [TBL] [Abstract][Full Text] [Related]
19. Cochlear model including three-dimensional fluid and four modes of partition flexibility. Taber LA; Steele CR J Acoust Soc Am; 1981 Aug; 70(2):426-36. PubMed ID: 7288028 [TBL] [Abstract][Full Text] [Related]
20. Point-impedance characterization of the basilar membrane in a three-dimensional cochlea model. Diependaal RJ; Viergever MA Hear Res; 1983 Jul; 11(1):33-40. PubMed ID: 6885647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]