BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 7419589)

  • 1. Evidence for microtubule subunit addition to the distal end of mitotic structures in vitro.
    Heidemann SR; Zieve GW; McIntosh JR
    J Cell Biol; 1980 Oct; 87(1):152-9. PubMed ID: 7419589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of mitotic centrosomal microtubule initiation capacity at the metaphase-anaphase transition.
    Snyder JA; Hamilton BT; Mullins JM
    Eur J Cell Biol; 1982 Jun; 27(2):191-9. PubMed ID: 7117266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleated assembly of mitotic microtubules in living PTK2 cells after release from nocodazole treatment.
    De Brabander M; Geuens G; De Mey J; Joniau M
    Cell Motil; 1981; 1(4):469-83. PubMed ID: 7348606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine structural studies of early mitotic stages in untreated and nocodazole-treated HeLa cells.
    Paweletz N; Lang U
    Eur J Cell Biol; 1988 Dec; 47(2):334-45. PubMed ID: 3243286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A correlation between in vivo and in vitro effects of the microtubule inhibitors colchicine, parbendazole and nocodazole on myxamoebae of Physarum polycephalum.
    Quinlan RA; Roobol A; Pogson CI; Gull K
    J Gen Microbiol; 1981 Jan; 122(1):1-6. PubMed ID: 6895648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a minus end-specific microtubule-associated protein located at the mitotic poles in cultured mammalian cells.
    Maekawa T; Leslie R; Kuriyama R
    Eur J Cell Biol; 1991 Apr; 54(2):255-67. PubMed ID: 1679010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells.
    Zieve GW; Turnbull D; Mullins JM; McIntosh JR
    Exp Cell Res; 1980 Apr; 126(2):397-405. PubMed ID: 6153987
    [No Abstract]   [Full Text] [Related]  

  • 8. Microtubule dynamics during the cell cycle: the effects of taxol and nocodazole on the microtubule system of Pt K2 cells at different stages of the mitotic cycle.
    De Brabander M; Geuens G; Nuydens R; Willebrords R; Aerts F; De Mey J
    Int Rev Cytol; 1986; 101():215-74. PubMed ID: 2870994
    [No Abstract]   [Full Text] [Related]  

  • 9. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules.
    Bré MH; Kreis TE; Karsenti E
    J Cell Biol; 1987 Sep; 105(3):1283-96. PubMed ID: 2888771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human chromosomes and centrioles as nucleating sites for the in vitro assembly of microtubules from bovine brain tubulin.
    McGill M; Brinkley BR
    J Cell Biol; 1975 Oct; 67(1):189-99. PubMed ID: 809450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule-dependent cell cycle regulation is implicated in the G2 phase of Hydra cells.
    Dübel S; Little M
    J Cell Sci; 1988 Nov; 91 ( Pt 3)():347-59. PubMed ID: 3076888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. M-phase specific centrosome-microtubule alterations induced by the fungicide MBC in human granulosa cells.
    Can A; Albertini DF
    Mutat Res; 1997 Jan; 373(1):139-51. PubMed ID: 9015162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stabilization of microtubules in isolated spindles by tubulin-colchicine complex.
    Hays TS; Salmon ED
    Cell Motil Cytoskeleton; 1986; 6(3):282-90. PubMed ID: 3742623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of assembled and disassembled microtubule protein by double label fluorescence microscopy.
    Albertini DF; Clark JI
    Cell Biol Int Rep; 1981 Apr; 5(4):387-97. PubMed ID: 6112069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. gamma-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies.
    Nováková M; Dráberová E; Schürmann W; Czihak G; Viklický V; Dr-aber P
    Cell Motil Cytoskeleton; 1996; 33(1):38-51. PubMed ID: 8824733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma-tubulin distribution in interphase and mitotic cells upon stabilization and depolymerization of microtubules.
    Vorobjev IA; Uzbekov RE; Komarova YuA ; Alieva IB
    Membr Cell Biol; 2000; 14(2):219-35. PubMed ID: 11093584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of non-kinetochore microtubules in spindle elongation in mitotic PtK1 cells.
    Snyder JA; Golub RJ; Berg SP
    Eur J Cell Biol; 1986 Jan; 39(2):373-9. PubMed ID: 3956515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunoelectron microscopic localization of the 210,000-mol wt microtubule-associated protein in cultured cells of primates.
    De Brabander M; Bulinski JC; Geuens G; De Mey J; Borisy GG
    J Cell Biol; 1981 Nov; 91(2 Pt 1):438-45. PubMed ID: 6118376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal control of functional specification and distribution of spindle microtubules with 13, 14 and 15 protofilaments during mitosis in the ciliate Nyctotherus.
    Eichenlaub-Ritter U
    J Cell Sci; 1985 Jun; 76():337-55. PubMed ID: 2866192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine.
    Salmon ED; McKeel M; Hays T
    J Cell Biol; 1984 Sep; 99(3):1066-75. PubMed ID: 6470037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.