These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7419615)

  • 1. Multiple fractions of sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Sep; 104(3):443-59. PubMed ID: 7419615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and slow fractions of K+ flux in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1979 Mar; 98(3):539-52. PubMed ID: 438298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical temperature transition of K+-Na+ exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Apr; 103(1):87-95. PubMed ID: 7430260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How does reduced external K+ concentration affect the rate of Na+ efflux? Evidence against the K-Na coupled pump but in support of the association-induction hypothesis.
    Ling GN
    Physiol Chem Phys; 1978; 10(4):353-65. PubMed ID: 311014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of metabolic inhibition on ion contents and sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1982 Mar; 110(3):291-9. PubMed ID: 6282900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium-sodium distribution in human lymphocytes: description by the association-induction hypothesis.
    Negendank W; Shaller C
    J Cell Physiol; 1979 Jan; 98(1):95-105. PubMed ID: 762204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of sodium and potassium transport in phytohemagglutinin-stimulated human blood lymphocytes.
    Segel GB; Simon W; Lichtman MA
    J Clin Invest; 1979 Sep; 64(3):834-41. PubMed ID: 224078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of NaK2Cl symport and chloride channel permeability on ion flux balance and on transmembrane ion distribution in different types of animal cells].
    Vereninov AA; Glushankova LN; Rubashkin AA
    Tsitologiia; 1997; 39(8):727-39. PubMed ID: 9490512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation fluxes and volume regulation by human lymphocytes.
    Bui AH; Wiley JS
    J Cell Physiol; 1981 Jul; 108(1):47-54. PubMed ID: 7263767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-exchange of sodium in human lymphocytes.
    Negendank W; Shaller C
    Biophys J; 1984 Sep; 46(3):331-42. PubMed ID: 6487733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potasssium transport in human blood lymphocytes treated with phytohemagglutinin.
    Segel GB; Lichtman MA
    J Clin Invest; 1976 Dec; 58(6):1358-69. PubMed ID: 993349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unitary cause for the exclusion of Na+ and other solutes from living cells, suggested by effluxes of Na+, D-arabinose, and sucrose from normal, dying, and dead muscles.
    Ling GN; Walton CL; Ochsenfeld MM
    J Cell Physiol; 1981 Mar; 106(3):385-98. PubMed ID: 6971295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous efflux of K+ and Na+ from frog sartorius muscle freed of extracellular fluids: evidence for rapidly exchanging Na+ from the cells.
    Ling GN; Walton CL
    Physiol Chem Phys; 1975; 7(6):501-15. PubMed ID: 1083537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous net accumulation of both K+ and Na+ by lymphocytes at 0 degrees C.
    Negendank W; Shaller C
    Biochim Biophys Acta; 1981 Jan; 640(1):368-73. PubMed ID: 7213692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of ion transport by the Na(+)-Ca2+,K+ exchange in rods isolated from the salamander retina.
    Perry RJ; McNaughton PA
    J Physiol; 1993 Jul; 466():443-80. PubMed ID: 8410702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI; Lapin AV; Gusev GP
    Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motional characteristics of K+ and Na+ in intact and sucrose-permeabilized rat lymphocytes.
    Bogner P; Berke T; Kellermayer M
    Physiol Chem Phys Med NMR; 1992; 24(4):281-8. PubMed ID: 1296210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of high external concentrations of K+ on 86Rb+ efflux in human platelets: evidence for Na+/K+/2Cl- co-transport.
    de Silva HA; Carver JG; Aronson JK
    Clin Sci (Lond); 1996 Dec; 91(6):725-31. PubMed ID: 8976808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The role of ionic transporters in the long-term regulation of the water content in animal cells. The mathematical model and real lymphoid cells].
    Vereninov AA; Glushankova LN; Rubashkin AA
    Tsitologiia; 1995; 37(12):1151-66. PubMed ID: 8714351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the monovalent ion fluxes in U937 cells under the balanced ion distribution: recognition of ion transporters responsible for changes in cell ion and water balance during apoptosis.
    Vereninov AA; Goryachaya TS; Moshkov AV; Vassilieva IO; Yurinskaya VE; Lang F; Rubashkin AA
    Cell Biol Int; 2007 Apr; 31(4):382-93. PubMed ID: 17337217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.