These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 7419615)
21. Expression and role of sodium, potassium, chloride cotransport (NKCC1) in mouse inner medullary collecting duct (mIMCD-K2) epithelial cells. Glanville M; Kingscote S; Thwaites DT; Simmons NL Pflugers Arch; 2001 Oct; 443(1):123-31. PubMed ID: 11692276 [TBL] [Abstract][Full Text] [Related]
22. Rate of potassium-sodium exchange by human lymphocytes: prediction of the cooperative adsorption model. Negendank W; Karreman G J Cell Physiol; 1979 Jan; 98(1):107-12. PubMed ID: 762188 [TBL] [Abstract][Full Text] [Related]
23. Underestimation of Na permeability in muscle cells: implications for the theory of cell potential and for energy requirement of the Na pump. Ling GN Physiol Chem Phys; 1980; 12(3):215-32. PubMed ID: 6968916 [TBL] [Abstract][Full Text] [Related]
24. The physical state of potassium in the human lymphocyte: a review. Negendank W Scanning Microsc; 1989 Sep; 3(3):865-72; discussion 872-5. PubMed ID: 2694357 [TBL] [Abstract][Full Text] [Related]
25. The permeability of human lymphocytes to chloride. Negendank W Biochem Biophys Res Commun; 1984 Jul; 122(2):522-8. PubMed ID: 6466326 [TBL] [Abstract][Full Text] [Related]
26. [Changes in sodium pump transport activity and Na+, K+-ATPase expression level following lymphocytes activation in humans]. Marakhova II; Karitskaia II; Vinogradova TA; Aksenov ND; Moshkov AV; Khaĭdukova AL Tsitologiia; 2003; 45(11):1149-59. PubMed ID: 14989154 [TBL] [Abstract][Full Text] [Related]
27. Cooperative interaction among cell surface sites: evidence in support of the surface adsorption theory of cellular electrical potentials. Ling GN; Fisher A Physiol Chem Phys Med NMR; 1983; 15(5):369-78. PubMed ID: 6609378 [TBL] [Abstract][Full Text] [Related]
28. [Transport of ions into human erythrocytes in various forms of hemolytic anemia: a correlation analysis]. Orlov SN; Pokudin NI; El'-Rabi LS; Brusovanik VI; Kubatiev AA Biokhimiia; 1993 Jun; 58(6):866-73. PubMed ID: 8364110 [TBL] [Abstract][Full Text] [Related]
29. Experimental verification of an expected relation between time of incubation and magnitude of the fast and slow fractions of the sodium efflux from amphibian eggs. Ling GN; Ochsenfeld MM Physiol Chem Phys; 1977; 9(4-5):427-31. PubMed ID: 306631 [TBL] [Abstract][Full Text] [Related]
30. Palytoxin-induced Na+ influx into yeast cells expressing the mammalian sodium pump is due to the formation of a channel within the enzyme. Redondo J; Fiedler B; Scheiner-Bobis G Mol Pharmacol; 1996 Jan; 49(1):49-57. PubMed ID: 8569711 [TBL] [Abstract][Full Text] [Related]
31. Na+ permeation and block of hERG potassium channels. Gang H; Zhang S J Gen Physiol; 2006 Jul; 128(1):55-71. PubMed ID: 16769794 [TBL] [Abstract][Full Text] [Related]
32. Saturable, sodium-induced release of potassium in the muscle exposed to glycerol. Hummel Z; Koszorus L Physiologie; 1989; 26(4):275-83. PubMed ID: 2517653 [TBL] [Abstract][Full Text] [Related]
33. A 23Na-NMR study on cation transport systems in a patient with hypokalemic periodic paralysis. Cacciafesta M; Cammarella I; Ruggeri R; Germani MA; Soldo AR; Musca A Recenti Prog Med; 1993 May; 84(5):350-6. PubMed ID: 8390085 [TBL] [Abstract][Full Text] [Related]
34. Basolateral ion transport mechanisms during fluid secretion by Drosophila Malpighian tubules: Na+ recycling, Na+:K+:2Cl- cotransport and Cl- conductance. Ianowski JP; O'Donnell MJ J Exp Biol; 2004 Jul; 207(Pt 15):2599-609. PubMed ID: 15201292 [TBL] [Abstract][Full Text] [Related]
35. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Sun J; Dai S; Wang R; Chen S; Li N; Zhou X; Lu C; Shen X; Zheng X; Hu Z; Zhang Z; Song J; Xu Y Tree Physiol; 2009 Sep; 29(9):1175-86. PubMed ID: 19638360 [TBL] [Abstract][Full Text] [Related]
36. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways. Gusev GP; Ivanova TI Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079 [TBL] [Abstract][Full Text] [Related]
37. Extracellular hypotonicity increases Na,K-ATPase cell surface expression via enhanced Na+ influx in cultured renal collecting duct cells. Vinciguerra M; Arnaudeau S; Mordasini D; Rousselot M; Bens M; Vandewalle A; Martin PY; Hasler U; Feraille E J Am Soc Nephrol; 2004 Oct; 15(10):2537-47. PubMed ID: 15466258 [TBL] [Abstract][Full Text] [Related]
38. Molecular control of cardiac sodium homeostasis in health and disease. Hilgemann DW; Yaradanakul A; Wang Y; Fuster D J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S47-S56. PubMed ID: 16686682 [TBL] [Abstract][Full Text] [Related]
39. Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. Donini A; O'Donnell MJ J Exp Biol; 2005 Feb; 208(Pt 4):603-10. PubMed ID: 15695753 [TBL] [Abstract][Full Text] [Related]
40. On the role of Na,K-ATPase: a challenge for the membrane-pump and association-induction hypotheses. Bogner P; Nagy E; Miseta A Physiol Chem Phys Med NMR; 1998; 30(1):81-7. PubMed ID: 9807236 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]