These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7419619)

  • 1. Quantitative demonstration of cell surface involvement in a plant-animal symbiosis: lectin inhibition of reassociation.
    Meints RH; Pardy RL
    J Cell Sci; 1980 Jun; 43():239-51. PubMed ID: 7419619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infectivity of Chlorella species for the ciliate Paramecium bursaria is not based on sugar residues of their cell wall components, but on their ability to localize beneath the host cell membrane after escaping from the host digestive vacuole in the early infection process.
    Kodama Y; Fujishima M
    Protoplasma; 2007; 231(1-2):55-63. PubMed ID: 17602279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental test of the symbiosis specificity between the ciliate Paramecium bursaria and strains of the unicellular green alga Chlorella.
    Summerer M; Sonntag B; Sommaruga R
    Environ Microbiol; 2007 Aug; 9(8):2117-22. PubMed ID: 17635555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal relationships of host cell and algal mitosis in the green hydra symbiosis.
    McAuley PJ
    J Cell Sci; 1982 Dec; 58():423-31. PubMed ID: 7183696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viruses of symbiotic Chlorella-like algae isolated from Paramecium bursaria and Hydra viridis.
    Van Etten JL; Meints RH; Kuczmarski D; Burbank DE; Lee K
    Proc Natl Acad Sci U S A; 1982 Jun; 79(12):3867-71. PubMed ID: 16593198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Participation of algal surface structures in the cell recognition process during infection of aposymbiotic Paramecium bursaria with symbiotic chlorellae.
    Reisser W; Radunz A; Wiessner W
    Cytobios; 1982; 33(129):39-50. PubMed ID: 7105840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colchicine, nocodazole and trifluralin: different effects of microtubule polymerization inhibitors on the uptake and migration of endosymbiotic algae in Hydra viridis.
    Fracek S; Margulis L
    Cytobios; 1979; 25(97):7-16. PubMed ID: 527381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses triggered in chloroplast of Chlorella variabilis NC64A by long-term association with Paramecium bursaria.
    Minaeva E; Ermilova E
    Protoplasma; 2017 Jul; 254(4):1769-1776. PubMed ID: 28074287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host's nutritional conditions during early infection process.
    Kodama Y; Fujishima M
    Environ Microbiol; 2012 Oct; 14(10):2800-11. PubMed ID: 22672708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria-symbiosis. I. The nitrogen and the carbon metabolism (author's transl)].
    Reisser W
    Arch Microbiol; 1976 Apr; 107(3):357-60. PubMed ID: 1275643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delay in migration of symbiotic algae in Hydra viridis by inhibitors of microtubule protein polymerization.
    Cooper G; Margulis L
    Cytobios; 1977; 19(73):7-19. PubMed ID: 616808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endosymbiosis of Chlorella species to the ciliate Paramecium bursaria alters the distribution of the host's trichocysts beneath the host cell cortex.
    Kodama Y; Fujishima M
    Protoplasma; 2011 Apr; 248(2):325-37. PubMed ID: 20582727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of intracellular algae by various strains of the symbiotic Hydra viridissima.
    Bossert P; Dunn KW
    J Cell Sci; 1986 Sep; 85():187-95. PubMed ID: 3793792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow cytometry as a strategy to study the endosymbiosis of algae in Paramecium bursaria.
    Gerashchenko BI; Nishihara N; Ohara T; Tosuji H; Kosaka T; Hosoya H
    Cytometry; 2000 Nov; 41(3):209-15. PubMed ID: 11042618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cell cycle of symbiotic Chlorella. IV. DNA content of algae slowly increases during host starvation of green hydra.
    McAuley PJ; Muscatine L
    J Cell Sci; 1986 Sep; 85():73-84. PubMed ID: 3793797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QUANTITATIVE ESTIMATION OF MOVEMENT OF AN AMINO ACID FROM HOST TO CHLORELLA SYMBIONTS IN GREEN HYDRA.
    McAuley PJ
    Biol Bull; 1987 Dec; 173(3):504-512. PubMed ID: 29320223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular infection of aposymbiotic Hydra viridis by a foreign free-living Chlorella sp.: initiation of a stable symbiosis.
    Rahat M; Reich V
    J Cell Sci; 1984 Jan; 65():265-77. PubMed ID: 6715427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey of lectin binding in Paramecium.
    Allen RD; Ueno MS; Fok AK
    J Protozool; 1988 Aug; 35(3):400-7. PubMed ID: 3183999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ciliate Paramecium bursaria allows budding of symbiotic Chlorella variabilis cells singly from the digestive vacuole membrane into the cytoplasm during algal reinfection.
    Kodama Y; Sumita H
    Protoplasma; 2022 Jan; 259(1):117-125. PubMed ID: 33881616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cell cycle of symbiotic Chlorella. I. The relationship between host feeding and algal cell growth and division.
    McAuley PJ
    J Cell Sci; 1985 Aug; 77():225-39. PubMed ID: 4086515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.