These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 74201)
1. Retrograde axonal and transsynaptic transport of macromolecules: physiological and pathophysiological importance. Schwab ME; Thoenen H Agents Actions; 1977 Sep; 7(3):361-8. PubMed ID: 74201 [TBL] [Abstract][Full Text] [Related]
2. Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. Schwab ME; Suda K; Thoenen H J Cell Biol; 1979 Sep; 82(3):798-810. PubMed ID: 92475 [TBL] [Abstract][Full Text] [Related]
3. [Axonal transport from the nerve ending to the nerve cell body: a pathway for trophic signals and neurotoxins]. Schwab ME Bull Schweiz Akad Med Wiss; 1980 Apr; 36(1-3):7-19. PubMed ID: 6159028 [TBL] [Abstract][Full Text] [Related]
4. Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes. Dumas M; Schwab ME; Thoenen H J Neurobiol; 1979 Mar; 10(2):179-97. PubMed ID: 512657 [TBL] [Abstract][Full Text] [Related]
5. Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Stoeckel K; Schwab M; Thoenen H Brain Res; 1977 Aug; 132(2):273-85. PubMed ID: 70259 [TBL] [Abstract][Full Text] [Related]
6. Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron microscope study using colloidal gold as a tracer. Schwab ME; Thoenen H J Cell Biol; 1978 Apr; 77(1):1-13. PubMed ID: 659508 [TBL] [Abstract][Full Text] [Related]
7. Synaptic targeting of retrogradely transported trophic factors in motoneurons: comparison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrophin-1 with tetanus toxin. Rind HB; Butowt R; von Bartheld CS J Neurosci; 2005 Jan; 25(3):539-49. PubMed ID: 15659589 [TBL] [Abstract][Full Text] [Related]
8. Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Stöckel K; Schwab M; Thoenen H Brain Res; 1975 Nov; 99(1):1-16. PubMed ID: 52914 [TBL] [Abstract][Full Text] [Related]
9. Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor. Schwab M; Thoenen H Brain Res; 1977 Feb; 122(3):459-74. PubMed ID: 66083 [TBL] [Abstract][Full Text] [Related]
10. Retrograde transport of macromolecules in axons. Kristensson K Annu Rev Pharmacol Toxicol; 1978; 18():97-110. PubMed ID: 77144 [No Abstract] [Full Text] [Related]
11. Characterization of the binding properties and retrograde axonal transport of a monoclonal antibody directed against the rat nerve growth factor receptor. Taniuchi M; Johnson EM J Cell Biol; 1985 Sep; 101(3):1100-6. PubMed ID: 2411735 [TBL] [Abstract][Full Text] [Related]
12. Functions of retrograde axonal transport. Bisby MA Fed Proc; 1982 May; 41(7):2307-11. PubMed ID: 6176472 [TBL] [Abstract][Full Text] [Related]
13. Internalization and retrograde axonal trafficking of tetanus toxin in motor neurons and trans-synaptic propagation at central synapses exceed those of its C-terminal-binding fragments. Ovsepian SV; Bodeker M; O'Leary VB; Lawrence GW; Oliver Dolly J Brain Struct Funct; 2015; 220(3):1825-38. PubMed ID: 25665801 [TBL] [Abstract][Full Text] [Related]
14. Comparison of nerve terminal events in vivo effecting retrograde transport of vesicles containing neurotrophins or synaptic vesicle components. Weible MW; Ozsarac N; Grimes ML; Hendry IA J Neurosci Res; 2004 Mar; 75(6):771-81. PubMed ID: 14994338 [TBL] [Abstract][Full Text] [Related]
15. Selective uptake and retrograde axonal transport of dopamine-beta-hydroxylase antibodies in peripheral adrenergic neurons. Fillenz M; Gagnon C; Stoeckel K; Thoenen H Brain Res; 1976 Sep; 114(2):293-303. PubMed ID: 61057 [TBL] [Abstract][Full Text] [Related]
16. A means for targeting therapeutics to peripheral nervous system neurons with axonal damage. Federici T; Liu JK; Teng Q; Yang J; Boulis NM Neurosurgery; 2007 May; 60(5):911-8; discussion 911-8. PubMed ID: 17460527 [TBL] [Abstract][Full Text] [Related]
17. Axonal transport and neuronal transcytosis of trophic factors, tracers, and pathogens. von Bartheld CS J Neurobiol; 2004 Feb; 58(2):295-314. PubMed ID: 14704960 [TBL] [Abstract][Full Text] [Related]
18. The pathogenesis of reactive axonal swellings: role of axonal transport. Griffin JW; Price DL; Engel WK; Drachman DB J Neuropathol Exp Neurol; 1977; 36(2):214-27. PubMed ID: 65450 [TBL] [Abstract][Full Text] [Related]
19. Transsynaptic retrograde transport of fragment C of tetanus toxin demonstrated by immunohistochemical localization. Evinger C; Erichsen JT Brain Res; 1986 Aug; 380(2):383-8. PubMed ID: 2428427 [TBL] [Abstract][Full Text] [Related]
20. Retrograde axonal transport of an exogenous enzyme covalently linked to B-IIb fragment of tetanus toxin. Beaude P; Delacour A; Bizzini B; Domuado D; Remy MH Biochem J; 1990 Oct; 271(1):87-91. PubMed ID: 1699518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]