BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 7420154)

  • 1. The effect of exogenous thyroid hormones on functional recovery of the rat after acute spinal cord compression injury.
    Tator CH; van der Jagt RH
    J Neurosurg; 1980 Sep; 53(3):381-4. PubMed ID: 7420154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of triiodo-L-thyronine on axonal regeneration in the rat spinal cord after acute compression injury.
    Tator CH; Rivlin AS; Lewis AJ; Schmoll B
    J Neurosurg; 1983 Mar; 58(3):406-10. PubMed ID: 6827328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in thyroid hormones, thyroid stimulating hormone and cortisol in acute spinal cord injury.
    Bugaresti JM; Tator CH; Silverberg JD; Szalai JP; Malkin DG; Malkin A; Tay SK
    Paraplegia; 1992 Jun; 30(6):401-9. PubMed ID: 1635789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acute administration of eicosapentaenoic acid is neuroprotective after spinal cord compression injury in rats.
    Lim SN; Huang W; Hall JC; Ward RE; Priestley JV; Michael-Titus AT
    Prostaglandins Leukot Essent Fatty Acids; 2010; 83(4-6):193-201. PubMed ID: 20833522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute phase effects of ATP-MgCl2 on experimental spinal cord injury.
    Cakir E; Baykal S; Karahan SC; Kuzeyli K; Uydu H
    Neurosurg Rev; 2003 Jan; 26(1):67-70. PubMed ID: 12520320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury.
    Roonprapunt C; Huang W; Grill R; Friedlander D; Grumet M; Chen S; Schachner M; Young W
    J Neurotrauma; 2003 Sep; 20(9):871-82. PubMed ID: 14577865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats.
    Kojima A; Tator CH
    J Neurotrauma; 2002 Feb; 19(2):223-38. PubMed ID: 11893024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of methylprednisolone in compression trauma to the feline spinal cord.
    Means ED; Anderson DK; Waters TR; Kalaf L
    J Neurosurg; 1981 Aug; 55(2):200-8. PubMed ID: 7252543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed applications of L1 and chondroitinase ABC promote recovery after spinal cord injury.
    Lee HJ; Bian S; Jakovcevski I; Wu B; Irintchev A; Schachner M
    J Neurotrauma; 2012 Jul; 29(10):1850-63. PubMed ID: 22497349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat.
    Rivlin AS; Tator CH
    Surg Neurol; 1978 Jul; 10(1):38-43. PubMed ID: 684604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of acute spinal cord compression injury on thyroid function in the rat.
    Tator CH; van der Jagt RH; Malkin A
    Surg Neurol; 1982 Jul; 18(1):64-8. PubMed ID: 7112391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of triiodothyronine on the amino acid uptake of brain and spinal cord in normal and spinal hemisected adult rats.
    Wells MR; Lofton SA; Bernstein JJ
    J Neurosci Res; 1981; 6(5):609-20. PubMed ID: 6798220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats.
    Namiki J; Kojima A; Tator CH
    J Neurotrauma; 2000 Dec; 17(12):1219-31. PubMed ID: 11186234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thyroid hormone enhances transected axonal regeneration and muscle reinnervation following rat sciatic nerve injury.
    Panaite PA; Barakat-Walter I
    J Neurosci Res; 2010 Jun; 88(8):1751-63. PubMed ID: 20127814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined therapy of methylprednisolone and brain-derived neurotrophic factor promotes axonal regeneration and functional recovery after spinal cord injury in rats.
    Li L; Xu Q; Wu Y; Hu W; Gu P; Fu Z
    Chin Med J (Engl); 2003 Mar; 116(3):414-8. PubMed ID: 12781049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of timing of decompression on neurologic recovery and histopathologic findings after spinal cord compression in a rat model.
    Jazayeri SB; Firouzi M; Abdollah Zadegan S; Saeedi N; Pirouz E; Nategh M; Jahanzad I; Mohebbi Ashtiani A; Rahimi-Movaghar V
    Acta Med Iran; 2013 Aug; 51(7):431-7. PubMed ID: 23945885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naloxone and experimental spinal cord injury: Part 1. High dose administration in a static load compression model.
    Black P; Markowitz RS; Keller S; Wachs K; Gillespie J; Finkelstein SD
    Neurosurgery; 1986 Dec; 19(6):905-8. PubMed ID: 3808239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A re-assessment of treatment with a tyrosine kinase inhibitor (imatinib) on tissue sparing and functional recovery after spinal cord injury.
    Sharp KG; Yee KM; Steward O
    Exp Neurol; 2014 Apr; 254():1-11. PubMed ID: 24440639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium chloride reinforces the regeneration-promoting effect of chondroitinase ABC on rubrospinal neurons after spinal cord injury.
    Yick LW; So KF; Cheung PT; Wu WT
    J Neurotrauma; 2004 Jul; 21(7):932-43. PubMed ID: 15307905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.