These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62 related articles for article (PubMed ID: 7421810)
41. The taxonomy of protein structure. Rossmann MG; Argos P J Mol Biol; 1977 Jan; 109(1):99-129. PubMed ID: 839535 [No Abstract] [Full Text] [Related]
42. Tertiary structure in carboxypeptidase. Kuntz ID J Am Chem Soc; 1972 Nov; 94(24):8568-72. PubMed ID: 4638988 [No Abstract] [Full Text] [Related]
43. Studies on gamma-glutamyl carboxypeptidase. I. The solid phase synthesis of analogs of polyglutamates of folic acid and their effects on human liver gamma-glutamyl carboxypeptidase. Baugh CM; Stevens JC; Krumdieck CL Biochim Biophys Acta; 1970 Jul; 212(1):116-25. PubMed ID: 5500927 [No Abstract] [Full Text] [Related]
44. Chemical modification of hemoglobins: a study of conformation restraint by internal bridging. Simon SR; Konigsberg WH Proc Natl Acad Sci U S A; 1966 Aug; 56(2):749-56. PubMed ID: 5229992 [No Abstract] [Full Text] [Related]
45. A space-filling model of the active site region of carboxypeptidase A. Sebastian JF; Butkus JC J Chem Educ; 1975 Oct; 52(10):660-1. PubMed ID: 1194378 [No Abstract] [Full Text] [Related]
46. Studies of the interaction of 2,3-diphosphoglycerate and carbon dioxide with hemoglobins from mouse, man, and elephant. Tomita S; Riggs A J Biol Chem; 1971 Feb; 246(3):547-54. PubMed ID: 5542668 [No Abstract] [Full Text] [Related]
47. Electrostatic potentials of proteins. 1. Carboxypeptidase A. Hayes DM; Kollman PA J Am Chem Soc; 1976 May; 98(11):3335-45. PubMed ID: 1262648 [No Abstract] [Full Text] [Related]
48. [Theoretical conformational analysis of noinvalent carboxypeptidase A complexes with inhibitors and substrates]. Lipkind GM; Paslen VV Mol Biol (Mosk); 1980; 14(5):1142-50. PubMed ID: 7421820 [TBL] [Abstract][Full Text] [Related]
49. The three-dimensional structures of tick carboxypeptidase inhibitor in complex with A/B carboxypeptidases reveal a novel double-headed binding mode. Arolas JL; Popowicz GM; Lorenzo J; Sommerhoff CP; Huber R; Aviles FX; Holak TA J Mol Biol; 2005 Jul; 350(3):489-98. PubMed ID: 15961103 [TBL] [Abstract][Full Text] [Related]
50. Structural principles of the broad substrate specificity of Thermoactinomyces vulgaris carboxypeptidase T--role of amino acid residues at positions 260 and 262. Grishin AM; Akparov VKh; Chestukhina GG Protein Eng Des Sel; 2008 Sep; 21(9):545-51. PubMed ID: 18515300 [TBL] [Abstract][Full Text] [Related]
51. Structure and dynamics of the metal site of cadmium-substituted carboxypeptidase A in solution and crystalline states and under steady-state peptide hydrolysis. Bauer R; Danielsen E; Hemmingsen L; Sorensen MV; Ulstrup J; Friis EP; Auld DS; Bjerrum MJ Biochemistry; 1997 Sep; 36(38):11514-24. PubMed ID: 9298972 [TBL] [Abstract][Full Text] [Related]
52. [Analysis of the conformational states of amino acid residues Arg-145, Tyr-248, and Glu-270 of the active center of carboxypeptidase A]. Paslen VV; Lipkind GM Mol Biol (Mosk); 1980; 14(4):928-38. PubMed ID: 7421810 [No Abstract] [Full Text] [Related]
53. [Enzymes as molecular machines]. Christen P Schweiz Med Wochenschr; 1971 May; 101(19):657-66. PubMed ID: 4946981 [No Abstract] [Full Text] [Related]
54. ACTIVE CENTER OF CARBOXYPEPTIDASE A. VALLEE BL Fed Proc; 1964; 23():8-17. PubMed ID: 14117872 [No Abstract] [Full Text] [Related]