These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7422017)

  • 1. Influence of rifamycin SV on bile acid metabolism in rats.
    Okolicsanyi L; Lirussi F; Nassuato G; Orlando R; Bussolon R; Dal Brun G
    Naunyn Schmiedebergs Arch Pharmacol; 1980 Aug; 313(2):171-4. PubMed ID: 7422017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of rifamycin SV on the metabolism of bile salts in the rat].
    Okolicsanyi L; Nassuato G; Lirussi F; Orlando R; Dal Brun G
    G Ital Chemioter; 1979; 26(1-2):237-40. PubMed ID: 554815
    [No Abstract]   [Full Text] [Related]  

  • 3. The interaction of rifamycin-SV with the hepatic transport and sulfation of taurolithocolic acid in rats.
    Bonazzi P; Novelli G; Galeazzi R
    Pharmacol Res Commun; 1986 Aug; 18(8):675-85. PubMed ID: 3763675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of hepatic uptake of bile acids by rifamycins.
    Anwer MS; Kroker R; Hegner D
    Naunyn Schmiedebergs Arch Pharmacol; 1978 Mar; 302(1):19-24. PubMed ID: 652048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of rifamycin SV with hepatic transport of taurocholic acid in the isolated perfused rat liver.
    Kroker R; Anwer MS; Hegner D
    Naunyn Schmiedebergs Arch Pharmacol; 1978 May; 302(3):323-7. PubMed ID: 662028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bile-salt metabolism in the primate fetus.
    Little JM; Smallwood RA; Lester R; Piasecki GJ; Jackson BT
    Gastroenterology; 1975 Dec; 69(6):1315-20. PubMed ID: 1193330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2.
    Fattinger K; Cattori V; Hagenbuch B; Meier PJ; Stieger B
    Hepatology; 2000 Jul; 32(1):82-6. PubMed ID: 10869292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible explanations for the differences in secretory characteristics between conjugated and free bile acids.
    O'Máille ER; Richards TG
    J Physiol; 1977 Mar; 265(3):855-66. PubMed ID: 16125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of hepatic transport of bile salt. Effect of protein synthesis inhibition on excretion of bile salts and their binding to liver surface membrane fractions.
    Gonzalez MC; Sutherland E; Simon FR
    J Clin Invest; 1979 Apr; 63(4):684-94. PubMed ID: 438330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bile flow and biliary excretion of ursocholate in the rat.
    Kitani K; Kanai S; Sato Y; Uchida K
    Life Sci; 1983 Dec; 33(24):2377-86. PubMed ID: 6645805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biliary reabsorption of cholate sodium, glycocholate sodium, and taurocholate sodium from the rat biliary tree after retrograde intrabiliary injection.
    Dammann HG
    Klin Wochenschr; 1976 Sep; 54(17):845-7. PubMed ID: 966634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of bile salt transport in rat liver. Evidence that increased maximum bile salt secretory capacity is due to increased cholic acid receptors.
    Simon FR; Sutherland EM; Gonzalez M
    J Clin Invest; 1982 Aug; 70(2):401-11. PubMed ID: 7096571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of metal ion catalyzed oxidation of rifamycin SV on cell viability and metabolic performance of isolated rat hepatocytes.
    Sáez GT; Valls V; Cabedo H; Iradi A; Bannister WH; Bannister JV
    Biochim Biophys Acta; 1991 May; 1092(3):326-35. PubMed ID: 2049402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [N-methyl-11C]cholylsarcosine, a novel bile acid tracer for PET/CT of hepatic excretory function: radiosynthesis and proof-of-concept studies in pigs.
    Frisch K; Jakobsen S; Sørensen M; Munk OL; Alstrup AK; Ott P; Hofmann AF; Keiding S
    J Nucl Med; 2012 May; 53(5):772-8. PubMed ID: 22454486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of bile acid structure in amelioration of griseofulvin-induced murine protoporphyric hepatopathy.
    Berenson MM; Welch V; Garcia-Marin JJ
    J Lab Clin Med; 1991 Jul; 118(1):89-98. PubMed ID: 2066649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portal blood concentrations of conjugated cholic and chenodeoxycholic acids. Relationships to bile salt synthesis in liver cells.
    Botham KM; Lawson ME; Beckett GJ; Percy-Robb IW; Boyd GS
    Biochim Biophys Acta; 1981 Jul; 665(1):81-7. PubMed ID: 7197162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver.
    Stieger B; Fattinger K; Madon J; Kullak-Ublick GA; Meier PJ
    Gastroenterology; 2000 Feb; 118(2):422-30. PubMed ID: 10648470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatic metabolism of 3 alpha-hydroxy-5 beta-etianic acid (3 alpha-hydroxy-5 beta-androstan-17 beta-carboxylic acid) in the adult rat.
    Little JM; St Pyrek J; Lester R
    J Clin Invest; 1983 Jan; 71(1):73-80. PubMed ID: 6848561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile salt metabolism following jejunoileal bypass for morbid obesity.
    Stein TA; Wise L
    Ann Surg; 1977 Jan; 185(1):67-72. PubMed ID: 831637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of type and amount of dietary fat and 1,2-dimethylhydrazine on biliary bile acids, fecal bile acids, and neutral sterols in rats.
    Reddy BS; Mangat S; Sheinfil A; Weisburger JH; Wynder EL
    Cancer Res; 1977 Jul; 37(7 Pt 1):2132-7. PubMed ID: 861940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.