These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 7422035)
1. [Changes in the extracellular potassium concentration and the slow negative potential in the cerebral cortex]. Roĭtbak AI; Makhek I; Pavlik V; Bobrov AV; Ocherashvili IV Neirofiziologiia; 1980; 12(5):459-63. PubMed ID: 7422035 [TBL] [Abstract][Full Text] [Related]
2. [Changes in the concentration of extracellular potassium in the cerebral cortex with different parameters of electrical stimulation]. Roĭtbak AI; Ocherashvili IV Fiziol Zh SSSR Im I M Sechenova; 1987 Feb; 73(2):277-83. PubMed ID: 3569598 [TBL] [Abstract][Full Text] [Related]
3. [Changes in the concentration of intracellular potassium and the phenomenon of dendritic potential depression against a slow negative potential background in the cat cerebral cortex]. Roĭtbak AI; Ocherashvili IV Neirofiziologiia; 1983; 15(2):198-200. PubMed ID: 6855981 [TBL] [Abstract][Full Text] [Related]
4. [Slow surface-negative potentials and the concentration of extracellular potassium in the cerebral cortex under different parameters of electrical stimulation]. Roĭtbak AI; Ocherashvili IV; Kapel' RG Fiziol Zh (1978); 1984; 30(5):566-71. PubMed ID: 6489555 [No Abstract] [Full Text] [Related]
5. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Dietzel I; Heinemann U; Lux HD Glia; 1989; 2(1):25-44. PubMed ID: 2523337 [TBL] [Abstract][Full Text] [Related]
6. [Changes in the concentration of extracellular potassium and the slow negative potential in the somatosensory area of the cortex in response to stimulation of the ventroposterolateral nucleus of the thalamus in the cat]. Ocherashvili IV; Roĭtbak AI; Bobrov AV; Kapel' RG Neirofiziologiia; 1983; 15(2):192-4. PubMed ID: 6855980 [TBL] [Abstract][Full Text] [Related]
7. Evoked and spontaneous extracellular potassium shifts in the cerebral cortex of unanaesthetized cats. Molnár M; Skinner JE Acta Physiol Hung; 1983; 61(4):265-79. PubMed ID: 6316727 [TBL] [Abstract][Full Text] [Related]
8. [Non-synaptic inhibition in the cortex of the cat]. Roĭtbak AI; Ocherashvili IV Zh Vyssh Nerv Deiat Im I P Pavlova; 1985; 35(1):10-6. PubMed ID: 3984494 [TBL] [Abstract][Full Text] [Related]
9. [Slow electrical potentials arising after the initial response in the somatosensory cortex of the brain of the cat upon stimulation of the ventroposterolateral nucleus of the thalamus]. Ocherashvili IV Neirofiziologiia; 1985; 17(4):435-41. PubMed ID: 4047239 [TBL] [Abstract][Full Text] [Related]
10. On the process of inhibition in the superficial neuropil of the cerebral cortex. Roitbak A; Ocherashvili I; Gedevanishvili G Physiol Bohemoslov; 1985; 34 Suppl():133-6. PubMed ID: 2941782 [TBL] [Abstract][Full Text] [Related]
11. [Relations between the cortical DC potentials and the K+ concentration of the blood and cerebral cortex extracellular space in reversible asphyxia]. Staschen CM; Lehmenkühler A; Zidek W; Caspers H EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1987 Jun; 18(2):53-7. PubMed ID: 3111826 [TBL] [Abstract][Full Text] [Related]
12. Cholinergic action on cortical glial cells in vivo. Seigneur J; Kroeger D; Nita DA; Amzica F Cereb Cortex; 2006 May; 16(5):655-68. PubMed ID: 16093563 [TBL] [Abstract][Full Text] [Related]
13. Ionic content and membrane potentials of cortical neurons and glia. Grossman RG; Lynch L; Shires GT Neurology; 1968 Mar; 18(3):292. PubMed ID: 5690379 [No Abstract] [Full Text] [Related]
14. [Shifts in the steady potential and intracellular concentration of potassium in the cerebral cortex in response to prolonged low-frequency electrical stimulation of the surface of the cortex in the rat]. Koroleva VI; Gorelova NA Neirofiziologiia; 1983; 15(2):170-7. PubMed ID: 6855976 [TBL] [Abstract][Full Text] [Related]
15. [Negative surface potential shift and neuronal and glial cell response to tetanic stimulation of the surface of the cortex]. Labakhua TSh; Bekaia GL; Okudzhava VM Neirofiziologiia; 1982; 14(3):248-53. PubMed ID: 7110436 [TBL] [Abstract][Full Text] [Related]
16. [Glial origin of negative shifts in the surface potential of the brain upon tetanic stimulation: microelectrode study and mathematical analysis]. Roĭtbak AI; Fanardzhian VV; Melkonian DS; Melkonian AA Neirofiziologiia; 1983; 15(5):509-16. PubMed ID: 6316176 [TBL] [Abstract][Full Text] [Related]
17. [Proceedings: Extra-cellular ion concentration and glial cells of the cerebral cortex]. Noda Y; Takagashira M; Shioya A; Sugaya E Nihon Seirigaku Zasshi; 1974 Sep; 36(8-9):287. PubMed ID: 4478335 [No Abstract] [Full Text] [Related]
18. Cerebral extracellular potassium concentration change and cerebral impedance change in short-term ischemia in gerbil. Yamaguchi T Bull Tokyo Med Dent Univ; 1986 Mar; 33(1):1-8. PubMed ID: 3457643 [TBL] [Abstract][Full Text] [Related]
19. Contribution of glia and neurons to the surface-negative potentials of the cerebral cortex during its electrical stimulation. Roitbak AI; Fanardjian VV; Melkonyan DS; Melkonyan AA Neuroscience; 1987 Mar; 20(3):1057-67. PubMed ID: 3601062 [TBL] [Abstract][Full Text] [Related]
20. On the possible nature of the processes induced by unconditioned stimulation in the cerebral cortex. Roitbak AI Acta Neurobiol Exp (Wars); 1984; 44(1):41-9. PubMed ID: 6720342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]