BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7422715)

  • 1. [Influences of acoustic coupling between source and vocal tract of the Fo of oral vowels. Consequence for the study of intrinsic characteristics].
    Guérin B; Boë LJ
    Phonetica; 1980; 37(3):169-92. PubMed ID: 7422715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can intrinsic vowel Fo be explained by source/tract coupling?
    Ewan WG
    J Acoust Soc Am; 1979 Aug; 66(2):358-62. PubMed ID: 512198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.
    Maxfield L; Palaparthi A; Titze I
    J Voice; 2017 Mar; 31(2):149-156. PubMed ID: 27501922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood.
    Ménard L; Schwartz JL; Boë LJ
    J Speech Lang Hear Res; 2004 Oct; 47(5):1059-80. PubMed ID: 15603462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Producing American English vowels during vocal tract growth: a perceptual categorization study of synthesized vowels.
    Ménard L; Davis BL; Boë LJ; Roy JP
    J Speech Lang Hear Res; 2009 Oct; 52(5):1268-85. PubMed ID: 19696438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of synthetic vowels based on a time-varying model of the vocal tract area function.
    Bunton K; Story BH
    J Acoust Soc Am; 2010 Apr; 127(4):EL146-52. PubMed ID: 20369982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic roles of the laryngeal cavity in vocal tract resonance.
    Takemoto H; Adachi S; Kitamura T; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2228-38. PubMed ID: 17069318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric measurements of vocal tracts for male speakers from different races.
    Xue SA; Hao GJ; Mayo R
    Clin Linguist Phon; 2006 Nov; 20(9):691-702. PubMed ID: 17342877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method.
    Shiraishi M; Mishima K; Umeda H
    J Voice; 2021 Jul; 35(4):530-544. PubMed ID: 31889645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
    Arnela M; Guasch O
    J Acoust Soc Am; 2014 Jan; 135(1):369-79. PubMed ID: 24437777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Relations between the form of the vocal tract and the acoustic characteristics of the French vowels].
    Mrayati M; Carré R
    Phonetica; 1976; 33(4):285-306. PubMed ID: 996115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling.
    Vampola T; Laukkanen AM; Horácek J; Svec JG
    J Acoust Soc Am; 2011 Jan; 129(1):310-5. PubMed ID: 21303012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the human vocal tract due to aging and the acoustic correlates of speech production: a pilot study.
    Xue SA; Hao GJ
    J Speech Lang Hear Res; 2003 Jun; 46(3):689-701. PubMed ID: 14696995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
    Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of oral articulation on the acoustic characteristics of nasalized vowels.
    Rong P; Kuehn DP
    J Acoust Soc Am; 2010 Apr; 127(4):2543-53. PubMed ID: 20370036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The emergence of vowels in an infant.
    Buhr RD
    J Speech Hear Res; 1980 Mar; 23(1):73-94. PubMed ID: 7442186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on nonlinear source-filter interaction using synthetic vocal fold models.
    Migimatsu K; Tokuda IT
    J Acoust Soc Am; 2019 Aug; 146(2):983. PubMed ID: 31472538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parametric model of the vocal tract area function for vowel and consonant simulation.
    Story BH
    J Acoust Soc Am; 2005 May; 117(5):3231-54. PubMed ID: 15957790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed imaging of vocal fold vibrations and larynx movements within vocalizations of different vowels.
    Maurer D; Hess M; Gross M
    Ann Otol Rhinol Laryngol; 1996 Dec; 105(12):975-81. PubMed ID: 8973285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formant frequency estimation of high-pitched vowels using weighted linear prediction.
    Alku P; Pohjalainen J; Vainio M; Laukkanen AM; Story BH
    J Acoust Soc Am; 2013 Aug; 134(2):1295-313. PubMed ID: 23927127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.