These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 7425307)

  • 1. Intramedullary Schwann cell development following x-irradiation of mid-thoracic and lumbosacral spinal cord levels in immature rats.
    Heard JK; Gilmore SA
    Anat Rec; 1980 May; 197(1):85-93. PubMed ID: 7425307
    [No Abstract]   [Full Text] [Related]  

  • 2. A comparison of histopathologic changes following X-irradiation of mid-thoracic and lumbosacral levels of neonatal rat spinal cord.
    Heard JK; Gilmore SA
    Anat Rec; 1985 Feb; 211(2):198-204. PubMed ID: 3977087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of x-radiation-induced Schwann cell development in spinal cords of immature rats.
    Gilmore SA; Heard JK; Leiting JE
    Anat Rec; 1983 Mar; 205(3):313-9. PubMed ID: 6837944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Schwann cell induction in the ventral portion of the spinal cord.
    Gilmore SA; Phillips N; White P; Sims TJ
    Brain Res Bull; 1993; 30(3-4):339-45. PubMed ID: 8457882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schwann cells transplanted into normal and X-irradiated adult white matter do not migrate extensively and show poor long-term survival.
    Iwashita Y; Fawcett JW; Crang AJ; Franklin RJ; Blakemore WF
    Exp Neurol; 2000 Aug; 164(2):292-302. PubMed ID: 10915568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoradiographic studies of intramedullary Schwann cells in irradiated spinal cords of immature rats.
    Gilmore SA
    Anat Rec; 1971 Dec; 171(4):517-28. PubMed ID: 5128627
    [No Abstract]   [Full Text] [Related]  

  • 7. Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X-irradiated spinal cord not shared by Schwann cells.
    Lankford KL; Sasaki M; Radtke C; Kocsis JD
    Glia; 2008 Nov; 56(15):1664-78. PubMed ID: 18551623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the presence of peripheral-like nervous and connective tissue within irradiated spinal cord.
    Gilmore SA; Duncan D
    Anat Rec; 1968 Apr; 160(4):675-90. PubMed ID: 5666658
    [No Abstract]   [Full Text] [Related]  

  • 9. Schwann cell invasion of ventral spinal cord: the effect of irradiation on astrocyte barriers.
    Sims TJ; Durgun MB; Gilmore SA
    J Neuropathol Exp Neurol; 1998 Sep; 57(9):866-73. PubMed ID: 9737550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between intraspinal Schwann cells and the cellular constituents normally occurring in the spinal cord: an ultrastructural study in the irradiated rat.
    Sims TJ; Gilmore SA
    Brain Res; 1983 Oct; 276(1):17-30. PubMed ID: 6626996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord.
    Molander C; Xu Q; Grant G
    J Comp Neurol; 1984 Nov; 230(1):133-41. PubMed ID: 6512014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination.
    Mothe AJ; Tator CH
    Exp Neurol; 2008 Sep; 213(1):176-90. PubMed ID: 18586031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A light microscopic study of the effects of X-irradiation on the spinal cord of neonatal rats.
    Beal JA; Hall JL
    J Neuropathol Exp Neurol; 1974 Jan; 33(1):128-43. PubMed ID: 4812321
    [No Abstract]   [Full Text] [Related]  

  • 14. Schwann cell-neuron relationships in spinal cord gray matter.
    Gilmore SA; Durgun MB; Sims TJ
    Glia; 1996 Dec; 18(4):261-8. PubMed ID: 8972795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glial development in primary cultures established from normal and X-irradiated neonatal spinal cord.
    Sims TJ; Davies DL; Gilmore SA
    Glia; 1994 Dec; 12(4):319-28. PubMed ID: 7890334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arterial blood supply of the thoracic and lumbosacral parts of the spinal cord in Wistar rats.
    Mikusek J; Karmański A; Karmańska W
    Folia Morphol (Warsz); 1997; 56(3):165-74. PubMed ID: 9595843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dysfunctional oligodendrocyte progenitor cell (OPC) populations may inhibit repopulation of OPC depleted tissue.
    Chari DM; Huang WL; Blakemore WF
    J Neurosci Res; 2003 Sep; 73(6):787-93. PubMed ID: 12949904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron neutron capture irradiation of the rat spinal cord: histopathological evidence of a vascular-mediated pathogenesis.
    Morris GM; Coderre JA; Bywaters A; Whitehouse E; Hopewell JW
    Radiat Res; 1996 Sep; 146(3):313-20. PubMed ID: 8752310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereotactic radiosurgery improves locomotor recovery after spinal cord injury in rats.
    Zeman RJ; Wen X; Ouyang N; Rocchio R; Shih L; Alfieri A; Moorthy C; Etlinger JD
    Neurosurgery; 2008 Nov; 63(5):981-7; discussion 987-8. PubMed ID: 19005390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord.
    Guest JD; Rao A; Olson L; Bunge MB; Bunge RP
    Exp Neurol; 1997 Dec; 148(2):502-22. PubMed ID: 9417829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.