These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7425629)

  • 21. Dissimilatory metabolism of nitrate by the rumen microbiota.
    Jones GA
    Can J Microbiol; 1972 Dec; 18(12):1783-7. PubMed ID: 4675328
    [No Abstract]   [Full Text] [Related]  

  • 22. Effect of chloral hydrate on methane and propionic acid in the rumen.
    Van Nevel CJ; Henderickx HK; Demeyer DI; Martin J
    Appl Microbiol; 1969 May; 17(5):695-700. PubMed ID: 5785952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro.
    Asanuma N; Iwamoto M; Hino T
    J Dairy Sci; 1999 Apr; 82(4):780-7. PubMed ID: 10212465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.
    Kamke J; Soni P; Li Y; Ganesh S; Kelly WJ; Leahy SC; Shi W; Froula J; Rubin EM; Attwood GT
    BMC Res Notes; 2017 Aug; 10(1):367. PubMed ID: 28789673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of monolaurin on ruminal methanogens and selected bacterial species from cattle, as determined with the rumen simulation technique.
    Klevenhusen F; Meile L; Kreuzer M; Soliva CR
    Anaerobe; 2011 Oct; 17(5):232-8. PubMed ID: 21787874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxalate:formate exchange. The basis for energy coupling in Oxalobacter.
    Anantharam V; Allison MJ; Maloney PC
    J Biol Chem; 1989 May; 264(13):7244-50. PubMed ID: 2708365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Association of methanogenic bacteria with rumen protozoa.
    Krumholz LR; Forsberg CW; Veira DM
    Can J Microbiol; 1983 Jun; 29(6):676-80. PubMed ID: 6411316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation.
    Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT
    Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate inhibition in Pseudomonas oxalaticus OX1: a kinetic study of growth inhibition by oxalate and formate using extended cultures.
    Dijkhuizen L; Harder W
    Antonie Van Leeuwenhoek; 1975; 41(2):135-46. PubMed ID: 1080391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Culture of the rumen holotrich ciliate Dasytricha ruminantium schuberg.
    Clarke RT; Hungate RE
    Appl Microbiol; 1966 May; 14(3):340-5. PubMed ID: 4961553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system.
    He ZX; Qiao JY; Yan QX; Tan ZL; Wang M
    Animal; 2019 Jan; 13(1):90-97. PubMed ID: 29644945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of monensin withdrawal on rumen fermentation, methanogenesis and microbial populations in cattle.
    Abrar A; Tsukahara T; Kondo M; Ban-Tokuda T; Chao W; Matsui H
    Anim Sci J; 2015 Sep; 86(9):849-54. PubMed ID: 25782058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporation of nickel into ruminal factor F430 as affected by monensin and formate.
    Oscar TP; Spears JW
    J Anim Sci; 1990 May; 68(5):1400-4. PubMed ID: 2365652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methane Inhibition Alters the Microbial Community, Hydrogen Flow, and Fermentation Response in the Rumen of Cattle.
    Martinez-Fernandez G; Denman SE; Yang C; Cheung J; Mitsumori M; McSweeney CS
    Front Microbiol; 2016; 7():1122. PubMed ID: 27486452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attempts to induce reductive acetogenesis into a sheep rumen.
    Immig I; Demeyer D; Fiedler D; Van Nevel C; Mbanzamihigo L
    Arch Tierernahr; 1996; 49(4):363-70. PubMed ID: 8988318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in ruminal oxalate degradation rates associated with adaptation to oxalate ingestion.
    Allison MJ; Littledike ET; James LF
    J Anim Sci; 1977 Nov; 45(5):1173-9. PubMed ID: 599103
    [No Abstract]   [Full Text] [Related]  

  • 37. Hydrogen-using bacteria in a methanogenic acetate enrichment culture.
    Archer DB
    J Appl Bacteriol; 1984 Feb; 56(1):125-9. PubMed ID: 6423605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Caffeic acid modulates methane production and rumen fermentation in an opposite way with high-forage or high-concentrate substrate in vitro.
    Jin Q; You W; Tan X; Liu G; Zhang X; Liu X; Wan F; Wei C
    J Sci Food Agric; 2021 May; 101(7):3013-3020. PubMed ID: 33205409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of monensin on rumen metabolism in vitro.
    Van Nevel CJ; Demeyer DI
    Appl Environ Microbiol; 1977 Sep; 34(3):251-7. PubMed ID: 911159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phloroglucinol Degradation in the Rumen Promotes the Capture of Excess Hydrogen Generated from Methanogenesis Inhibition.
    Martinez-Fernandez G; Denman SE; Cheung J; McSweeney CS
    Front Microbiol; 2017; 8():1871. PubMed ID: 29051749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.