These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7425702)

  • 21. Estimation of mechanical stresses on closed cusps of porcine bioprosthetic valves: effects of stiffening, focal calcium and focal thinning.
    Sabbah HN; Hamid MS; Stein PD
    Am J Cardiol; 1985 Apr; 55(8):1091-6. PubMed ID: 3984872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue buckling as a mechanism of bioprosthetic valve failure.
    Vesely I; Boughner D; Song T
    Ann Thorac Surg; 1988 Sep; 46(3):302-8. PubMed ID: 3137903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of Clinically Relevant Elliptical Deformations on the Damage Patterns of Sagging and Stretched Leaflets in a Bioprosthetic Heart Valve.
    Sritharan D; Fathi P; Weaver JD; Retta SM; Wu C; Duraiswamy N
    Cardiovasc Eng Technol; 2018 Sep; 9(3):351-364. PubMed ID: 29948838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis.
    Cacciola G; Peters GW; Schreurs PJ
    J Biomech; 2000 May; 33(5):521-30. PubMed ID: 10708772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model of the geometrical changes in aortic valve leaflets in response to leaflet extension and variable boundary conditions.
    Fisher J; Butterfield M; Lockie KJ; Davies GA
    Proc Inst Mech Eng H; 1992; 206(1):7-14. PubMed ID: 1418197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaflet Stresses During Full Device Simulation of Crimping to 6 mm in Transcatheter Aortic Valve Implantation, TAVI.
    Bressloff NW
    Cardiovasc Eng Technol; 2022 Oct; 13(5):735-750. PubMed ID: 35230649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of imperfect frame deployment and rotational orientation on stress within the prosthetic leaflets during transcatheter aortic valve implantation.
    Bailey J; Curzen N; Bressloff NW
    J Biomech; 2017 Feb; 53():22-28. PubMed ID: 28118978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anatomy of aortic heart valve leaflets: the influence of glutaraldehyde fixation on function.
    Christie GW
    Eur J Cardiothorac Surg; 1992; 6 Suppl 1():S25-32; discussion S33. PubMed ID: 1389275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stress Analysis of Transcatheter Aortic Valve Leaflets Under Dynamic Loading: Effect of Reduced Tissue Thickness.
    Abbasi M; Azadani AN
    J Heart Valve Dis; 2017 Jul; 26(4):386-396. PubMed ID: 29302937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of stent height upon stresses on the cusps of closed bioprosthetic valves.
    Hamid MS; Sabbah HN; Stein PD
    J Biomech; 1986; 19(9):759-69. PubMed ID: 3793750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stent and Leaflet Stresses in 29-mm Second-Generation Balloon-Expandable Transcatheter Aortic Valve.
    Xuan Y; Krishnan K; Ye J; Dvir D; Guccione JM; Ge L; Tseng EE
    Ann Thorac Surg; 2017 Sep; 104(3):773-781. PubMed ID: 28410636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Image-based immersed boundary model of the aortic root.
    Hasan A; Kolahdouz EM; Enquobahrie A; Caranasos TG; Vavalle JP; Griffith BE
    Med Eng Phys; 2017 Sep; 47():72-84. PubMed ID: 28778565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical stresses on closed cusps of porcine bioprosthetic valves: correlation with sites of calcification.
    Sabbah HN; Hamid MS; Stein PD
    Ann Thorac Surg; 1986 Jul; 42(1):93-6. PubMed ID: 3729623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age-related changes in the aortic valve affect leaflet stress distributions: implications for aortic valve degeneration.
    Singh R; Strom JA; Ondrovic L; Joseph B; VanAuker MD
    J Heart Valve Dis; 2008 May; 17(3):290-8; discussion 299. PubMed ID: 18592926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole.
    De Hart J; Peters GW; Schreurs PJ; Baaijens FP
    J Biomech; 2004 Mar; 37(3):303-11. PubMed ID: 14757449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluid-structure interaction analysis of eccentricity and leaflet rigidity on thrombosis biomarkers in bioprosthetic aortic valve replacements.
    Oks D; Samaniego C; Houzeaux G; Butakoff C; Vázquez M
    Int J Numer Method Biomed Eng; 2022 Dec; 38(12):e3649. PubMed ID: 36106918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The design of the normal aortic valve.
    Thubrikar M; Piepgrass WC; Shaner TW; Nolan SP
    Am J Physiol; 1981 Dec; 241(6):H795-801. PubMed ID: 7325246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour.
    Mohammadi H
    Proc Inst Mech Eng H; 2011 Jul; 225(7):718-22. PubMed ID: 21870379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.