These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7426379)

  • 41. Ability of a small, basic protein isolated from Russell's viper venom (Daboia russelli russelli) to induce renal tubular necrosis in mice.
    Mandal S; Bhattacharyya D
    Toxicon; 2007 Aug; 50(2):236-50. PubMed ID: 17499831
    [TBL] [Abstract][Full Text] [Related]  

  • 42. HgCl2-induced acute renal failure studied by split drop micropuncture technique in the rat.
    Huguenin M; Thiel G; Brunner FP
    Nephron; 1978; 20(3):147-56. PubMed ID: 628496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toxicology and Carcinogenesis Studies of Mercuric Chloride (CAS No. 7487-94-7) in F344 Rats and B6C3F1 Mice (Gavage Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1993 Feb; 408():1-260. PubMed ID: 12621522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scanning and transmission electron microscopy of mercuric chloride-induced acute tubular necrosis in rat kidney.
    Siegel FL; Bulger RE
    Virchows Arch B Cell Pathol; 1975 Jul; 18(3):243-62. PubMed ID: 808031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Epidermal growth factor attenuates tubular necrosis following mercuric chloride damage by regeneration of indigenous, not bone marrow-derived cells.
    Yen TH; Alison MR; Goodlad RA; Otto WR; Jeffery R; Cook HT; Wright NA; Poulsom R
    J Cell Mol Med; 2015 Feb; 19(2):463-73. PubMed ID: 25389045
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vimentin expression and distal tubular damage in the rat kidney.
    Zhu MQ; De Broe ME; Nouwen EJ
    Exp Nephrol; 1996; 4(3):172-83. PubMed ID: 8773480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of osteopontin in gentamicin-induced acute tubular necrosis and its recovery process.
    Xie Y; Nishi S; Iguchi S; Imai N; Sakatsume M; Saito A; Ikegame M; Iino N; Shimada H; Ueno M; Kawashima H; Arakawa M; Gejyo F
    Kidney Int; 2001 Mar; 59(3):959-74. PubMed ID: 11231351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tubular dilatation in the repair process of ischaemic tubular necrosis.
    Shimizu A; Masuda Y; Ishizaki M; Sugisaki Y; Yamanaka N
    Virchows Arch; 1994; 425(3):281-90. PubMed ID: 7812514
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Histological and subcellular distribution of 65 and 70 kD heat shock proteins in experimental nephrotoxic injury.
    Hernádez-Pando R; Pedraza-Chaverri J; Orozco-Estévez H; Silva-Serna P; Moreno I; Rondán-Zárate A; Elinos M; Correa-Rotter R; Larriva-Sahd J
    Exp Toxicol Pathol; 1995 Dec; 47(6):501-8. PubMed ID: 8871090
    [TBL] [Abstract][Full Text] [Related]  

  • 50. IKKα is involved in kidney recovery and regeneration of acute ischemia/reperfusion injury in mice through IL10-producing regulatory T cells.
    Wan X; Hou LJ; Zhang LY; Huang WJ; Liu L; Zhang Q; Hu B; Chen W; Chen X; Cao CC
    Dis Model Mech; 2015 Jul; 8(7):733-42. PubMed ID: 26035380
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The nature of D-serine--induced nephrotoxicity.
    Ganote CE; Peterson DR; Carone FA
    Am J Pathol; 1974 Nov; 77(2):269-82. PubMed ID: 4447130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phospholipid metabolism during renal regeneration after acute tubular necrosis.
    Toback FG; Havener LJ; Dodd RC; Spargo BH
    Am J Physiol; 1977 Feb; 232(2):216-22. PubMed ID: 842651
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cellular events in experimental unilateral ischemic renal atrophy and in regeneration after contralateral nephrectomy.
    Gobé GC; Axelsen RA; Searle JW
    Lab Invest; 1990 Dec; 63(6):770-9. PubMed ID: 2255186
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss.
    Cachat F; Lange-Sperandio B; Chang AY; Kiley SC; Thornhill BA; Forbes MS; Chevalier RL
    Kidney Int; 2003 Feb; 63(2):564-75. PubMed ID: 12631121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amino acid enhancement of renal regeneration after acute tubular necrosis.
    Toback FG
    Kidney Int; 1977 Sep; 12(3):193-8. PubMed ID: 926610
    [No Abstract]   [Full Text] [Related]  

  • 56. Coexpression of keratin and vimentin in damaged and regenerating tubular epithelia of the kidney.
    Gröne HJ; Weber K; Gröne E; Helmchen U; Osborn M
    Am J Pathol; 1987 Oct; 129(1):1-8. PubMed ID: 2444108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acute tubular necrosis.
    Arbeit LA; Weinstein SW
    Med Clin North Am; 1981 Jan; 65(1):147-63. PubMed ID: 6782397
    [No Abstract]   [Full Text] [Related]  

  • 58. Mitochondrial proliferation within the nephron. I. Comparison of mitochondrial hyperplasia of tubular regeneration with compensatory hypertrophy.
    Cuppage FE; Chiga M; Tate A
    Am J Pathol; 1973 Jan; 70(1):119-30. PubMed ID: 4682836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Up-regulation of parathyroid hormone-related protein in folic acid-induced acute renal failure.
    Santos S; Bosch RJ; Ortega A; Largo R; Fernández-Agulló T; Gazapo R; Egido J; Esbrit P
    Kidney Int; 2001 Sep; 60(3):982-95. PubMed ID: 11532093
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hyperplasia, hypertrophy, and phenotypic alterations in the distal nephron after acute proximal tubular injury in the rat.
    Nouwen EJ; Verstrepen WA; Buyssens N; Zhu MQ; De Broe ME
    Lab Invest; 1994 Apr; 70(4):479-93. PubMed ID: 7909858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.