These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7426379)

  • 61. Maintenance of renal function in salt loaded rats despite severe tubular necrosis induced by HgCl 2 .
    DiBona GF; McDonald FD; Flamenbaum W; Dammin GJ; Oken DE
    Nephron; 1971; 8(3):205-20. PubMed ID: 5155275
    [No Abstract]   [Full Text] [Related]  

  • 62. Nucleic acid synthesis in the regenerating nephron following injury with mercuric chloride.
    Cuppage FE; Cunningham N; Tate A
    Lab Invest; 1969 Nov; 21(5):449-57. PubMed ID: 5351490
    [No Abstract]   [Full Text] [Related]  

  • 63. The morphology of "acute tubular necrosis" in man: analysis of 57 renal biopsies and a comparison with the glycerol model.
    Solez K; Morel-Maroger L; Sraer JD
    Medicine (Baltimore); 1979 Sep; 58(5):362-76. PubMed ID: 481195
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hexachloro-1:3-butadiene-induced renal tubular necrosis in the mouse.
    Ishmael J; Pratt I; Lock EA
    J Pathol; 1984 Mar; 142(3):195-203. PubMed ID: 6707786
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metal accumulation and nephron heterogeneity in mercuric chloride-induced acute renal failure.
    Wilks MF; Gregg NJ; Bach PH
    Toxicol Pathol; 1994; 22(3):282-90. PubMed ID: 7529424
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hyaluronan is apically secreted and expressed by proliferating or regenerating renal tubular cells.
    Asselman M; Verhulst A; Van Ballegooijen ES; Bangma CH; Verkoelen CF; De Broe ME
    Kidney Int; 2005 Jul; 68(1):71-83. PubMed ID: 15954897
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury.
    Fang TC; Alison MR; Cook HT; Jeffery R; Wright NA; Poulsom R
    J Am Soc Nephrol; 2005 Jun; 16(6):1723-32. PubMed ID: 15814835
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Antibodies to both ICAM-1 and LFA-1 do not protect the kidney against toxic (HgCl2) injury.
    Ghielli M; Verstrepen WA; De Greef KE; Helbert MH; Ysebaert DK; Nouwen EJ; De Broe ME
    Kidney Int; 2000 Sep; 58(3):1121-34. PubMed ID: 10972676
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rapamycin worsens renal function and intratubular cast formation in protein overload nephropathy.
    Coombes JD; Mreich E; Liddle C; Rangan GK
    Kidney Int; 2005 Dec; 68(6):2599-607. PubMed ID: 16316336
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Caspase-3-independent internucleosomal DNA fragmentation in ischemic acute kidney injury.
    Yoshida T; Shimizu A; Masuda Y; Mii A; Fujita E; Yoshizaki K; Higo S; Kanzaki G; Kajimoto Y; Takano H; Fukuda Y
    Nephron Exp Nephrol; 2012; 120(3):e103-13. PubMed ID: 22678593
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Studies on the nephrotoxicity of aminoglycoside antibiotics and protection from these effects. (1). Nephrotoxicity of gentamicin and mercuric chloride].
    Kojima R; Suzuki Y
    Nihon Yakurigaku Zasshi; 1984 Nov; 84(5):453-62. PubMed ID: 6519581
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Acute renal failure caused by nephrotoxins.
    Oken DE
    Environ Health Perspect; 1976 Jun; 15():101-9. PubMed ID: 1001287
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tubules are the major site of M-CSF production in experimental kidney disease: correlation with local macrophage proliferation.
    Isbel NM; Hill PA; Foti R; Mu W; Hurst LA; Stambe C; Lan HY; Atkins RC; Nikolic-Paterson DJ
    Kidney Int; 2001 Aug; 60(2):614-25. PubMed ID: 11473644
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Activity of glucose-6-phosphatase in regenerating tubular epithelium in rat kidney after necrosis induced with mercuric chloride: a light and electronmicroscopical study.
    Böti Z; Kóbor J; Ormos J
    Br J Exp Pathol; 1982 Dec; 63(6):615-24. PubMed ID: 6295432
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phagocytosis of E. coli by renal tubular epithelia.
    Shimamura T; Maesaka JK
    Yale J Biol Med; 1984; 57(6):817-24. PubMed ID: 6399649
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Morphologic diagnosis of acute tubular necrosis (ATN) by autofluorescence.
    Salinas-Madrigal L; Sotelo-Avila C
    Am J Kidney Dis; 1986 Jan; 7(1):84-7. PubMed ID: 3942136
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Amino acid-mediated stimulation of renal phospholipid biosynthesis after acute tubular necrosis.
    Toback FG; Teegarden DE; Havener LJ
    Kidney Int; 1979 May; 15(5):542-7. PubMed ID: 480786
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pathophysiology of acute renal failure.
    Smolens P; Stein JH
    Am J Med; 1981 Mar; 70(3):479-82. PubMed ID: 7011008
    [No Abstract]   [Full Text] [Related]  

  • 79. The effects of repeated administration of mercuric chloride on exfoliation of renal tubular cells and urinary glutamic-oxaloacetic transaminase activity in the rat.
    Prescott LF; Ansari S
    Toxicol Appl Pharmacol; 1969 Jan; 14(1):97-107. PubMed ID: 5775564
    [No Abstract]   [Full Text] [Related]  

  • 80. Regeneration after acute tubular necrosis.
    Toback FG
    Kidney Int; 1992 Jan; 41(1):226-46. PubMed ID: 1593859
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.