These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 742662)

  • 1. Effects of level of acoustic stimulation on locomotor activity in the gerbil.
    Galvani PF
    Am J Psychol; 1978 Sep; 91(3):473-82. PubMed ID: 742662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of stimulus modality on the shuttle activity in rats.
    Werka T; Walasek G; Swirszcz K
    Behav Brain Res; 2004 May; 151(1-2):327-9. PubMed ID: 15084449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further observations on the incremental stimulus intensity effect and habituation of the human electrodermal response.
    O'Gorman JG; Jamieson RD
    J Gen Psychol; 1978 Jan; 98(1st Half):145-54. PubMed ID: 627878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic startle and prepulse inhibition in the Mongolian gerbil.
    Gaese BH; Nowotny M; Pilz PK
    Physiol Behav; 2009 Oct; 98(4):460-6. PubMed ID: 19660482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience.
    Seidl AH; Grothe B
    J Neurophysiol; 2005 Aug; 94(2):1028-36. PubMed ID: 15829592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroencephalographic and behavioral effects of nocturnally occurring jet aircraft sounds.
    LeVere TE; Bartus RT; Hart FD
    Aerosp Med; 1972 Apr; 43(4):384-9. PubMed ID: 5045437
    [No Abstract]   [Full Text] [Related]  

  • 7. Habituation and sensitization of the acoustic startle response in rats: amplitude, threshold, and latency measures.
    Pilz PK; Schnitzler HU
    Neurobiol Learn Mem; 1996 Jul; 66(1):67-79. PubMed ID: 8661252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Autonomic reflexes, EEG and partial arousal reaction in the near-threshold region to acoustic stimuli in the newborn].
    Wranek U; Zwiener U; Eiselt M; Wunder L; Bolwin R
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1985 Jun; 16(2):120-3. PubMed ID: 3930212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of omni-directional noise-exposure during hearing onset and age on auditory spatial resolution in the Mongolian gerbil (Meriones unguiculatus) -- a behavioral approach.
    Maier JK; Kindermann T; Grothe B; Klump GM
    Brain Res; 2008 Jul; 1220():47-57. PubMed ID: 18343357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of primary phasic heart rate deceleration to stimulus repetition in an habituation procedure: influence of a subjective measure of activation/arousal on the evoked cardiac response.
    Binder M; Barry RJ; Kaiser J
    Int J Psychophysiol; 2005 Jan; 55(1):61-72. PubMed ID: 15598517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustical stress and hearing sensitivity in fishes: does the linear threshold shift hypothesis hold water?
    Smith ME; Kane AS; Popper AN
    J Exp Biol; 2004 Sep; 207(Pt 20):3591-602. PubMed ID: 15339955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic stimulation of the auditory system: effects and side-effects.
    Counter SA
    Scand Audiol Suppl; 1993; 37():1-32. PubMed ID: 8210963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of an auditory startle response system using chemicals or parametric modulation as positive controls.
    Marable BR; Maurissen JP
    Neurotoxicol Teratol; 2004; 26(2):231-7. PubMed ID: 15019956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral evidence for auditory induction in a species of rodent: Mongolian gerbil (Meriones unguiculatus).
    Kobayasi KI; Usami A; Riquimaroux H
    J Acoust Soc Am; 2012 Dec; 132(6):4063-8. PubMed ID: 23231135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state?
    Abel C; Wittekindt A; Kössl M
    J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory evoked-potential correlates of decrement detection.
    Boettcher FA; Emery M
    Hear Res; 2006 Feb; 212(1-2):58-64. PubMed ID: 16403610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cardiovascular responses to a acoustic startle stimulus in man].
    Holand S; Girard A; Meyer-Bisch C; Elghozi JL
    Arch Mal Coeur Vaiss; 1999 Aug; 92(8):1127-31. PubMed ID: 10486678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Habituation contributes to the decline in wheel running within wheel-running reinforcement periods.
    Belke TW; McLaughlin RJ
    Behav Processes; 2005 Feb; 68(2):107-15. PubMed ID: 15686821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compound action potential offset and onset tuning curves generated by simultaneous masking in the mongolian gerbil. Effects of varying the intensity of the probe stimulus from 55 to 85 dB SPL.
    Henry KR
    Hear Res; 1987; 30(1):49-54. PubMed ID: 3680053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolution in azimuth sound localization in the Mongolian gerbil (Meriones unguiculatus).
    Maier JK; Klump GM
    J Acoust Soc Am; 2006 Feb; 119(2):1029-36. PubMed ID: 16521765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.