BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7428296)

  • 1. Propionate enhancement of acetoacetate oxidation in perfused rat hearts.
    Revsin-Lanier B; Lebowitz J; Morrow G
    Clin Sci (Lond); 1980 Oct; 59(4):289-92. PubMed ID: 7428296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic effects of propionate in normal and vitamin B 12 -deficient rats.
    Williams DL; Spray GH; Hems R; Williamson DH
    Biochem J; 1971 Sep; 124(3):501-7. PubMed ID: 5135236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.
    Russell RR; Taegtmeyer H
    J Clin Invest; 1991 Feb; 87(2):384-90. PubMed ID: 1671390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of chronic diabetes and physiological insulin concentration on ketone bodies metabolism in the heart.
    Sultan AM
    Diabetes Res; 1994; 27(2):47-60. PubMed ID: 7671554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load.
    Taegtmeyer H
    Basic Res Cardiol; 1983; 78(4):435-50. PubMed ID: 6626122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of acetoacetyl-CoA in isolated perfused rat hearts.
    Menahan LA; Hron WT
    Eur J Biochem; 1981 Oct; 119(2):295-9. PubMed ID: 7308186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propionyl-L-carnitine-mediated improvement in contractile function of rat hearts oxidizing acetoacetate.
    Russell RR; Mommessin JI; Taegtmeyer H
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H441-7. PubMed ID: 7840294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of increased mechanical work by isolated perfused rat heart during production or uptake of ketone bodies. Assessment of mitochondrial oxidized to reduced free nicotinamide-adenine dinucleotide ratios and oxaloacetate concentrations.
    Opie LH; Owen P
    Biochem J; 1975 Jun; 148(3):403-15. PubMed ID: 173281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperpolarized ketone body metabolism in the rat heart.
    Miller JJ; Ball DR; Lau AZ; Tyler DJ
    NMR Biomed; 2018 Jun; 31(6):e3912. PubMed ID: 29637642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation and disposal of tricarboxylic acid cycle intermediates during propionate oxidation in the isolated perfused rat heart.
    Peuhkurinen KJ
    Biochim Biophys Acta; 1982 Oct; 721(2):124-34. PubMed ID: 7138913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of methylmalonate and propionate on uptake of glucose and ketone bodies in vitro by brain of developing rats.
    Dutra JC; Wajner M; Wannmacher CF; Dutra-Filho CS; Wannmacher CM
    Biochem Med Metab Biol; 1991 Feb; 45(1):56-64. PubMed ID: 2015109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate.
    Russell RR; Taegtmeyer H
    Am J Physiol; 1991 Dec; 261(6 Pt 2):H1756-62. PubMed ID: 1750532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of diabetes and insulin on ketone bodies metabolism in heart.
    Sultan AM
    Mol Cell Biochem; 1992 Mar; 110(1):17-23. PubMed ID: 1579130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential oxidation of acetoacetate by the perfused heart.
    HALL LM
    Biochem Biophys Res Commun; 1961 Nov; 6():177-9. PubMed ID: 13903883
    [No Abstract]   [Full Text] [Related]  

  • 15. Gluconeogenesis from propionate in kidney and liver of the vitamin B12-deficient rat.
    Weidemann MJ; Hems R; Williams DL; Spray GH; Krebs HA
    Biochem J; 1970 Mar; 117(1):177-81. PubMed ID: 5420952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vitamin B12-deficient rat as a possible model of ketotic hyperglycinemia.
    Rowley BO; Brothers V; Gerritsen T
    Pediatr Res; 1975 Oct; 9(10):782-6. PubMed ID: 1187241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of propionate pathway metabolites on the oxidative activity of liver mitochondria under normal conditions and in vitamin B12 deficiency].
    Gessler NN; Fedotcheva NI; Kondrashova MN; BykhovskiÄ­ VIa
    Prikl Biokhim Mikrobiol; 1992; 28(4):607-13. PubMed ID: 1528821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Metabolites of the propionate pathway as regulators of fatty and dicarboxylic acid oxidation in liver mitochondria].
    Fedotcheva NI; Gessler NN; Anikeeva SP; Ignat'ev DA; BykhovskiÄ­ VIa; Kondrashova MN
    Biokhimiia; 1993 Apr; 58(4):599-605. PubMed ID: 8507736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart.
    Sundqvist KE; Peuhkurinen KJ; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1984 Oct; 801(3):429-36. PubMed ID: 6487652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective propionate oxidation in leukocytes of vitamin B12-deficient pigs: in vitro correction.
    Seashore MR; Hsia YE; Scully K; Durant JL; Rosenberg LE
    Am J Clin Nutr; 1973 Aug; 26(8):873-5. PubMed ID: 4720672
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.