These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 7428332)

  • 1. Antinociceptive comparison of quipazine and morphine.
    Minnema DJ; DeWitt L; Rosecrans JA
    Commun Psychopharmacol; 1980; 4(2):115-20. PubMed ID: 7428332
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of ephedrine and phenylpropanolamine on the antinociceptive effects of morphine and codeine in mice.
    Dambisya YM; Wong CL; Chan K
    Arch Int Pharmacodyn Ther; 1990; 308():5-12. PubMed ID: 2099137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparative anorexigenic activity and other pharmacological properties of quipazine and its N-acyl derivatives].
    Trubitsyna TK; Asnina VV; Mashkovskiĭ MD
    Farmakol Toksikol; 1986; 49(1):44-9. PubMed ID: 3948987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of diazepam and midazolam on the antinociceptive effect of morphine, metamizol and indomethacin in mice.
    Pakulska W; Czarnecka E
    Pharmazie; 2001 Jan; 56(1):89-91. PubMed ID: 11210678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement mu opioid antinociception by oral delta9-tetrahydrocannabinol: dose-response analysis and receptor identification.
    Cichewicz DL; Martin ZL; Smith FL; Welch SP
    J Pharmacol Exp Ther; 1999 May; 289(2):859-67. PubMed ID: 10215664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal antinociceptive synergism between morphine and clonidine persists in mice made acutely or chronically tolerant to morphine.
    Fairbanks CA; Wilcox GL
    J Pharmacol Exp Ther; 1999 Mar; 288(3):1107-16. PubMed ID: 10027848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of quipazine and fluoxetine on analgesic-induced catalepsy and antinociception in the rat.
    Malec D; Langwinski R
    J Pharm Pharmacol; 1980 Jan; 32(1):71-3. PubMed ID: 6102137
    [No Abstract]   [Full Text] [Related]  

  • 8. Modulation of oral morphine antinociceptive tolerance and naloxone-precipitated withdrawal signs by oral Delta 9-tetrahydrocannabinol.
    Cichewicz DL; Welch SP
    J Pharmacol Exp Ther; 2003 Jun; 305(3):812-7. PubMed ID: 12606610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa.
    Matsumoto K; Hatori Y; Murayama T; Tashima K; Wongseripipatana S; Misawa K; Kitajima M; Takayama H; Horie S
    Eur J Pharmacol; 2006 Nov; 549(1-3):63-70. PubMed ID: 16978601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nitric oxide/cyclic GMP system at the supraspinal site is involved in the development of acute morphine antinociceptive tolerance.
    Xu JY; Hill KP; Bidlack JM
    J Pharmacol Exp Ther; 1998 Jan; 284(1):196-201. PubMed ID: 9435178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antinociceptive effects of ketamine-opioid combinations in the mouse tail flick test.
    Dambisya YM; Lee TL
    Methods Find Exp Clin Pharmacol; 1994 Apr; 16(3):179-84. PubMed ID: 8046951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphine suppresses the alloantigen-driven CTL response in a dose-dependent and naltrexone reversible manner.
    Scott M; Carr DJ
    J Pharmacol Exp Ther; 1996 Aug; 278(2):980-8. PubMed ID: 8768756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barium potentiates the conditioned aversion to, but not the somatic signs of, morphine withdrawal in mice.
    Sato M; Wada K; Funada M
    Eur J Pharmacol; 2005 Sep; 519(3):215-22. PubMed ID: 16122731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of diabetes on the morphine-induced inhibition of gastrointestinal transit.
    Kamei J; Ohsawa M; Misawa M; Nagase H; Kasuya Y
    Nihon Shinkei Seishin Yakurigaku Zasshi; 1995 Apr; 15(2):165-9. PubMed ID: 7796321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential morphine tolerance development in the modulation of macrophage cytokine production in mice.
    Limiroli E; Gaspani L; Panerai AE; Sacerdote P
    J Leukoc Biol; 2002 Jul; 72(1):43-8. PubMed ID: 12101261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of chronic prenatal and postnatal administration of naltrexone in locomotor activity induced by morphine in mice.
    Medina Jiménez M; Luján Estrada M; Rodríguez R
    Arch Med Res; 1997; 28(1):61-5. PubMed ID: 9078589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of gap junction in the expression of morphine-induced antinociception.
    Suzuki M; Narita M; Nakamura A; Suzuki T
    Eur J Pharmacol; 2006 Mar; 535(1-3):169-71. PubMed ID: 16522320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potency differences for D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 as an antagonist of peptide and alkaloid micro-agonists in an antinociception assay.
    Sterious SN; Walker EA
    J Pharmacol Exp Ther; 2003 Jan; 304(1):301-9. PubMed ID: 12490605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo characterization of 6beta-naltrexol, an opioid ligand with less inverse agonist activity compared with naltrexone and naloxone in opioid-dependent mice.
    Raehal KM; Lowery JJ; Bhamidipati CM; Paolino RM; Blair JR; Wang D; Sadée W; Bilsky EJ
    J Pharmacol Exp Ther; 2005 Jun; 313(3):1150-62. PubMed ID: 15716384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminative stimulus effects of acute morphine followed by naltrexone in the squirrel monkey: a further characterization.
    White DA; Holtzman SG
    J Pharmacol Exp Ther; 2005 Jul; 314(1):374-82. PubMed ID: 15843500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.