These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7428808)

  • 1. Scanning electron microscopical study of the inside of sea urchin embryos (Pseudocentotus depressus). Effects of Aryl beta-xyloside, tunicamycin and deprivation of sulfate tions.
    Akasaka K; Amemiya S; Terayama H
    Exp Cell Res; 1980 Sep; 129(1):1-13. PubMed ID: 7428808
    [No Abstract]   [Full Text] [Related]  

  • 2. Spicule formation by cultured embryonic cells from the sea urchin.
    Mintz GR; DeFrancesco S; Lennarz WJ
    J Biol Chem; 1981 Dec; 256(24):13105-11. PubMed ID: 7309754
    [No Abstract]   [Full Text] [Related]  

  • 3. Dependence of sea urchin primary mesenchyme cell migration on xyloside- and sulfate-sensitive cell surface-associated components.
    Lane MC; Solursh M
    Dev Biol; 1988 May; 127(1):78-87. PubMed ID: 3360213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of proteoglycan synthesis in the development of sea urchins. II. The effect of administration of exogenous proteoglycan.
    Kinoshita S; Yoshii K
    Exp Cell Res; 1979 Dec; 124(2):361-9. PubMed ID: 510420
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of tunicamycin, an inhibitor of protein glycosylation, on embryonic development in the sea urchin.
    Schneider EG; Nguyen HT; Lennarz WJ
    J Biol Chem; 1978 Apr; 253(7):2348-55. PubMed ID: 632274
    [No Abstract]   [Full Text] [Related]  

  • 6. Biosynthesis of N-glycosidically linked glycoproteins during gastrulation of sea urchin embryos.
    Heifetz A; Lennarz WJ
    J Biol Chem; 1979 Jul; 254(13):6119-27. PubMed ID: 447698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell surface morphology of the morphogenetically active system of the embryo after treatment with tunicamycin, a glycosylation blocking drug.
    Nedvídek J; Antalíková L; Romanovský A
    Histochem J; 1985 May; 17(5):529-31. PubMed ID: 4030389
    [No Abstract]   [Full Text] [Related]  

  • 8. Isolation of organelles and components from sea urchin eggs and embryos.
    Wessel GM; Vacquier VD
    Methods Cell Biol; 2004; 74():491-522. PubMed ID: 15575619
    [No Abstract]   [Full Text] [Related]  

  • 9. The role of proteoglycan in the development of sea urchins. I. Abnormal development of sea urchin embryos caused by the disturbance of proteoglycan synthesis.
    Kinoshita S; Saiga H
    Exp Cell Res; 1979 Oct; 123(2):229-36. PubMed ID: 499355
    [No Abstract]   [Full Text] [Related]  

  • 10. [Effect of 2 inhibitors of glycoprotein synthesis, tunicamycin and 2-deoxyglucose, on development of the sea urchin (Paracentrotus lividus) egg].
    Lallier R
    C R Acad Hebd Seances Acad Sci D; 1978 Sep; 287(5):543-5. PubMed ID: 102461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sea urchin fertilization envelope: isolation, extraction, and characterization of a major protein fraction from Stronglyocentrotus purpuratus embryos.
    Carroll EJ; Baginski RM
    Biochemistry; 1978 Jun; 17(13):2605-12. PubMed ID: 678531
    [No Abstract]   [Full Text] [Related]  

  • 12. Scanning electron microscopy of embryos.
    Morrill JB
    Methods Cell Biol; 1986; 27():263-93. PubMed ID: 3084919
    [No Abstract]   [Full Text] [Related]  

  • 13. Analysis of cytokinesis by electron microscopy.
    König J; Borrego-Pinto J; Streichert D; Munzig M; Lenart P; Müller-Reichert T
    Methods Cell Biol; 2017; 137():225-238. PubMed ID: 28065307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of glycoprotein processing blocks assembly of spicules during development of the sea urchin embryo.
    Kabakoff B; Lennarz WJ
    J Cell Biol; 1990 Aug; 111(2):391-400. PubMed ID: 2143193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Methods Mol Biol; 2008; 475():315-34. PubMed ID: 18979252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The centriole-centrosome complex is affected by microgravity during cell division and in cilia of sea urchin embryos: results from space flight experiments.
    Schatten H; Chakrabarti A; Taylor M; Crosser M; Mitchell K
    Microsc Microanal; 1998; 4 Suppl 2():1132-3. PubMed ID: 12143890
    [No Abstract]   [Full Text] [Related]  

  • 17. Tunicamycin-induced alterations in the synthesis of sulfated proteoglycans and cell surface morphology in the chick embryo fibroblast.
    Pratt RM; Yamada KM; Olden K; Ohanian SH; Hascall VC
    Exp Cell Res; 1979 Feb; 118(2):245-52. PubMed ID: 153843
    [No Abstract]   [Full Text] [Related]  

  • 18. The effects of aphidicolin, an inhibitor of DNA replication, on sea urchin development.
    Brachet J; de Petrocellis B
    Exp Cell Res; 1981 Sep; 135(1):179-89. PubMed ID: 6793376
    [No Abstract]   [Full Text] [Related]  

  • 19. Acid mucopolysaccharide metabolism, the cell surface, and primary mesenchyme cell activity in the sea urchin embryo.
    Karp GC; Solursh M
    Dev Biol; 1974 Nov; 41(1):110-23. PubMed ID: 4140117
    [No Abstract]   [Full Text] [Related]  

  • 20. A comparison of protein synthetic patterns in normal and animalized sea urchin embryos.
    Carroll AG; Eckberg WR; Ozaki H
    Exp Cell Res; 1975 Feb; 90(2):328-32. PubMed ID: 1112276
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.