These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 742885)

  • 1. The effects of chlorotetracycline on calcium movements in isolated rat liver mitochondria.
    Luthra R; Olson MS
    Arch Biochem Biophys; 1978 Dec; 191(2):494-502. PubMed ID: 742885
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies of mitochondrial calcium movements using chlorotetracycline.
    Luthra R; Olson MS
    Biochim Biophys Acta; 1976 Sep; 440(3):744-58. PubMed ID: 822874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium movements in in situ mitochondria following activation of alpha-adrenergic receptors in rat liver cells.
    Poggioli J; Berthon B; Claret M
    FEBS Lett; 1980 Jun; 115(2):243-6. PubMed ID: 6249640
    [No Abstract]   [Full Text] [Related]  

  • 4. Evidence for mitochondrial localization of the hormone-responsive pool of Ca2+ in isolated hepatocytes.
    Babcock DF; Chen JL; Yip BP; Lardy HA
    J Biol Chem; 1979 Sep; 254(17):8117-20. PubMed ID: 381300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. delta pH induced calcium fluxes in rat liver mitochondria.
    Bernardi P; Azzone GF
    Eur J Biochem; 1979 Dec; 102(2):555-62. PubMed ID: 43251
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of ruthenium red on calcium efflux from rat liver mitochondria.
    Rigoni F; Mathien-Shire Y; Deana R
    FEBS Lett; 1980 Nov; 120(2):255-8. PubMed ID: 6160058
    [No Abstract]   [Full Text] [Related]  

  • 7. Correlation between glutamate and Ca2+ uptake in rat liver mitochondria.
    Debise R; Gachon P; Durand R
    FEBS Lett; 1978 Jan; 85(1):25-9. PubMed ID: 620791
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of malonyl-CoA on calcium uptake and pyridine nucleotide redox state in rat liver mitochondria.
    Wolkowicz PE; Wood JM
    FEBS Lett; 1979 May; 101(1):63-6. PubMed ID: 221253
    [No Abstract]   [Full Text] [Related]  

  • 9. ADP requirement for prevention by a cytosolic factor of Mg2+ and Ca2+ release from rat liver mitochondria.
    Binet A; Volfin P
    Arch Biochem Biophys; 1974 Oct; 164(2):756-64. PubMed ID: 4460888
    [No Abstract]   [Full Text] [Related]  

  • 10. [Effect of serotonin on calcium transport in rat liver mitochondria].
    Vinogradova MF; Siniutina NF; Polevoĭ VV
    Izv Akad Nauk SSSR Biol; 1978; (3):480-3. PubMed ID: 659708
    [No Abstract]   [Full Text] [Related]  

  • 11. The resolution of calcium fluxes in heart and liver mitochondria using the lanthanide series.
    Crompton M; Heid I; Baschera C; Carafoli E
    FEBS Lett; 1979 Aug; 104(2):352-4. PubMed ID: 477998
    [No Abstract]   [Full Text] [Related]  

  • 12. Development of mitochondrial calcium transport activity in rat liver.
    Bygrave FL; Ash GR
    FEBS Lett; 1977 Aug; 80(2):271-4. PubMed ID: 891978
    [No Abstract]   [Full Text] [Related]  

  • 13. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline.
    Chandler DE; Williams JA
    J Cell Biol; 1978 Feb; 76(2):386-99. PubMed ID: 10605445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dependence of Ca2+ transport in different tissue preparations on addition of inorganic phosphate].
    Kondrashova MN; Babaian GV; Kaminskiĭ IuG
    Ukr Biokhim Zh; 1971; 43(1):105-9. PubMed ID: 4326564
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of lysophospholipids on Ca2+ transport in rat liver mitochondria incubated at physiological Ca2+ concentrations in the presence of Mg2+, phosphate and ATP at 37 degrees C.
    Dalton S; Hughes BP; Barritt GJ
    Biochem J; 1984 Dec; 224(2):423-30. PubMed ID: 6517860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Destructive effects of chlorotetracycline on DNA structure by combined fluorometry with ethidium bromide.
    Yamada M; Miyata K; Araki T; Fujimori K; Kitamura A; Takasugi M
    Cell Mol Biol; 1983; 29(5):367-72. PubMed ID: 6627302
    [No Abstract]   [Full Text] [Related]  

  • 17. The influence of nupercaine on Ca2+ transport by rat liver and Ehrlich ascites cell mitochondria.
    Cockrell RS
    FEBS Lett; 1982 Aug; 144(2):279-82. PubMed ID: 7117542
    [No Abstract]   [Full Text] [Related]  

  • 18. The calcium-binding glycoprotein and mitochondrial calcium movements.
    Sandri G; Panfili E; Sottocasa GL
    Biochem Biophys Res Commun; 1976 Feb; 68(4):1272-9. PubMed ID: 817718
    [No Abstract]   [Full Text] [Related]  

  • 19. On the nature of Pi-induced, Mg2+-prevented Ca2+ release in rat liver mitochondria.
    Bernardi P; Pietrobon D
    FEBS Lett; 1982 Mar; 139(1):9-12. PubMed ID: 7075769
    [No Abstract]   [Full Text] [Related]  

  • 20. Chlorotetracycline-associated fluorescence changes during calcium uptake and release by rat brain synaptosomes.
    Schaffer WT; Olson MS
    J Neurochem; 1976 Dec; 27(6):1319-25. PubMed ID: 1003206
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.