These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7428957)

  • 1. Metabolic activation of nephrotoxic haloalkanes.
    Kluwe WM; Hook JB
    Fed Proc; 1980 Nov; 39(13):3129-33. PubMed ID: 7428957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 1): Identification of the nephrotoxic metabolic pathway.
    Kharasch ED; Schroeder JL; Liggitt HD; Park SB; Whittington D; Sheffels P
    Anesthesiology; 2006 Oct; 105(4):726-36. PubMed ID: 17006072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic drug metabolism and anesthesia.
    Poppers PJ
    Anaesthesist; 1980 Feb; 29(2):55-8. PubMed ID: 6990824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactivation of nephrotoxic haloalkenes by glutathione conjugation: formation of toxic and mutagenic intermediates by cysteine conjugate beta-lyase.
    Dekant W; Vamvakas S; Anders MW
    Drug Metab Rev; 1989; 20(1):43-83. PubMed ID: 2653763
    [No Abstract]   [Full Text] [Related]  

  • 5. In vivo nuclear magnetic resonance studies of hepatic methoxyflurane metabolism. I. Verification and quantitation of methoxydifluoroacetate.
    Selinsky BS; Perlman ME; London RE
    Mol Pharmacol; 1988 May; 33(5):559-66. PubMed ID: 3367903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of age on the distribution, metabolism and excretion of methoxyflurane in Fischer 344 rats: a possible relationship to nephrotoxicity.
    Bell LE; Hitt BA; Mazze RI
    J Pharmacol Exp Ther; 1975 Oct; 195(1):34-40. PubMed ID: 241841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 2): Identification of nephrotoxic metabolites.
    Kharasch ED; Schroeder JL; Liggitt HD; Ensign D; Whittington D
    Anesthesiology; 2006 Oct; 105(4):737-45. PubMed ID: 17006073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nephrotoxic interactions between ketonic solvents and halogenated aliphatic chemicals.
    Hewitt WR; Brown EM
    Fundam Appl Toxicol; 1984 Dec; 4(6):902-8. PubMed ID: 6394413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nephrotoxic effect of methoxyflurane anesthesia. A case report.
    Oyama T; Kotrly K; Barboriak J; Henschel EO
    Anaesthesist; 1976 Jan; 25(1):37-8. PubMed ID: 1259128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo nuclear magnetic resonance studies of hepatic methoxyflurane metabolism. II. A reevaluation of hepatic metabolic pathways.
    Selinsky BS; Perlman ME; London RE
    Mol Pharmacol; 1988 May; 33(5):567-73. PubMed ID: 3367904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cytochrome P4503A in cysteine S-conjugates sulfoxidation and the nephrotoxicity of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A) in rats.
    Sheffels P; Schroeder JL; Altuntas TG; Liggitt HD; Kharasch ED
    Chem Res Toxicol; 2004 Sep; 17(9):1177-89. PubMed ID: 15377151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation and membrane transport in nephrotoxicity.
    Dekant W; Vamvakas S
    Crit Rev Toxicol; 1996 May; 26(3):309-34. PubMed ID: 8726165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic activation of the nephrotoxic haloalkene 1,1,2-trichloro-3,3,3-trifluoro-1-propene by glutathione conjugation.
    Vamvakas S; Kremling E; Dekant W
    Biochem Pharmacol; 1989 Jul; 38(14):2297-304. PubMed ID: 2751695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Toxicity of divinyl ether and other inhalation anaesthetics in mice (author's transl)].
    Cascorbi HF; Kalhan SB; Dauchot PJ
    Anaesthesist; 1974 Nov; 23(11):469-71. PubMed ID: 4156457
    [No Abstract]   [Full Text] [Related]  

  • 15. Reductions in renal mass and the nephropathy induced by mercury.
    Zalups RK
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):366-79. PubMed ID: 9144453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Physicochemical factors in the binding of halogenated hydrocarbons to liver microsomes].
    Windorfer A; Stier A
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1969; 263(1):258. PubMed ID: 5804280
    [No Abstract]   [Full Text] [Related]  

  • 17. In vitro assessment of the effect of halogenated hydrocarbons: chloroform, dichloromethane, and dibromoethane on embryonic development of the rat.
    Brown-Woodman PD; Hayes LC; Huq F; Herlihy C; Picker K; Webster WS
    Teratology; 1998 Jun; 57(6):321-33. PubMed ID: 9664640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivation, toxicokinetics and acute effects of chloroform in Fisher 344 and Osborne Mendel male rats.
    Gemma S; Testai E; Chieco P; Vittozzi L
    J Appl Toxicol; 2004; 24(3):203-10. PubMed ID: 15211614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NTP Toxicology and Carcinogenesis Studies of o-Benzyl-p-Chlorophenol (CAS No. 120-32-1) in F344/N Rats and B6C3F1 Mice (Gavage Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1994 Jan; 424():1-304. PubMed ID: 12616287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically induced nephrotoxicity: role of metabolic activation.
    Rush GF; Smith JH; Newton JF; Hook JB
    Crit Rev Toxicol; 1984; 13(2):99-160. PubMed ID: 6380963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.