These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. Ben-Bassat A; Lamed R; Zeikus JG J Bacteriol; 1981 Apr; 146(1):192-9. PubMed ID: 7217000 [TBL] [Abstract][Full Text] [Related]
6. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Lo J; Zheng T; Hon S; Olson DG; Lynd LR J Bacteriol; 2015 Apr; 197(8):1386-93. PubMed ID: 25666131 [TBL] [Abstract][Full Text] [Related]
8. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. Guedon E; Payot S; Desvaux M; Petitdemange H J Bacteriol; 1999 May; 181(10):3262-9. PubMed ID: 10322031 [TBL] [Abstract][Full Text] [Related]
9. Energy Conservation Associated with Ethanol Formation from H2 and CO2 in Clostridium autoethanogenum Involving Electron Bifurcation. Mock J; Zheng Y; Mueller AP; Ly S; Tran L; Segovia S; Nagaraju S; Köpke M; Dürre P; Thauer RK J Bacteriol; 2015 Sep; 197(18):2965-80. PubMed ID: 26148714 [TBL] [Abstract][Full Text] [Related]
10. Relationships between cellobiose catabolism, enzyme levels, and metabolic intermediates in Clostridium cellulolyticum grown in a synthetic medium. Guedon E; Payot S; Desvaux M; Petitdemange H Biotechnol Bioeng; 2000 Feb; 67(3):327-35. PubMed ID: 10620263 [TBL] [Abstract][Full Text] [Related]
11. The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum. Yayo J; Rydzak T; Kuil T; Karlsson A; Harding DJ; Guss AM; van Maris AJA Appl Environ Microbiol; 2023 Jan; 89(1):e0175322. PubMed ID: 36625594 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Dash S; Olson DG; Joshua Chan SH; Amador-Noguez D; Lynd LR; Maranas CD Metab Eng; 2019 Sep; 55():161-169. PubMed ID: 31220663 [TBL] [Abstract][Full Text] [Related]
16. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate. Li HF; Knutson BL; Nokes SE; Lynn BC; Flythe MD Appl Microbiol Biotechnol; 2012 Feb; 93(4):1777-84. PubMed ID: 22218768 [TBL] [Abstract][Full Text] [Related]
17. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Stevenson DM; Weimer PJ Appl Environ Microbiol; 2005 Aug; 71(8):4672-8. PubMed ID: 16085862 [TBL] [Abstract][Full Text] [Related]
18. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. Rydzak T; McQueen PD; Krokhin OV; Spicer V; Ezzati P; Dwivedi RC; Shamshurin D; Levin DB; Wilkins JA; Sparling R BMC Microbiol; 2012 Sep; 12():214. PubMed ID: 22994686 [TBL] [Abstract][Full Text] [Related]
19. Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum. Rydzak T; Grigoryan M; Cunningham ZJ; Krokhin OV; Ezzati P; Cicek N; Levin DB; Wilkins JA; Sparling R Appl Microbiol Biotechnol; 2014; 98(14):6497-510. PubMed ID: 24841118 [TBL] [Abstract][Full Text] [Related]
20. Ethanol Production by Thermophilic Bacteria: Fermentation of Cellulosic Substrates by Cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Ng TK; Ben-Bassat A; Zeikus JG Appl Environ Microbiol; 1981 Jun; 41(6):1337-43. PubMed ID: 16345787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]