These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7430104)

  • 21. Anion Bohr effect of human hemoglobin.
    Bucci E; Fronticelli C
    Biochemistry; 1985 Jan; 24(2):371-6. PubMed ID: 3978079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of oxygen binding by Xenopus laevis hemoglobin: implications for the Root effect.
    Kister J; Bohn B; Marden MC; Poyart C
    Respir Physiol; 1989 May; 76(2):191-203. PubMed ID: 2749024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proton nuclear magnetic resonance and biochemical studies of oxygenation of human adult hemoglobin in deuterium oxide.
    Viggiano G; Ho NT; Ho C
    Biochemistry; 1979 Nov; 18(23):5238-47. PubMed ID: 497180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen equilibria of cathodic eel hemoglobin analysed in terms of the MWC model and Adair's successive oxygenation theory.
    Feuerlein RJ; Weber RE
    J Comp Physiol B; 1996; 165(8):597-606. PubMed ID: 8882506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of anions and protons on the Adair coefficients of haemoglobins A and Cowtown (His HC3(146) beta----Leu).
    Shih DT; Perutz MF
    J Mol Biol; 1987 May; 195(2):419-22. PubMed ID: 2821277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chloride binding and the Bohr effect of human fetal erythrocytes and HbFII solutions.
    Poyart C; Bursaux E; Guesnon P; Teisseire B
    Pflugers Arch; 1978 Sep; 376(2):169-75. PubMed ID: 30941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of sodium chloride on the properties of hemoglobin in the erythrocyte].
    Irzhak LI; Tiurnin AV
    Fiziol Zh SSSR Im I M Sechenova; 1985 Jul; 71(7):867-71. PubMed ID: 4043427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport.
    Jensen FB
    Acta Physiol Scand; 2004 Nov; 182(3):215-27. PubMed ID: 15491402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the hemoglobins of the Australian lungfish Neoceratodus forsteri (Krefft).
    Rasmussen JR; Wells RM; Henty K; Clark TD; Brittain T
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Feb; 152(2):162-7. PubMed ID: 18835585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-linear relationship between oxygen saturation and proton release, and equivalence of the Bohr and Haldane coefficients in human hemoglobin.
    Tyuma I; Ueda Y
    Biochem Biophys Res Commun; 1975 Aug; 65(4):1278-83. PubMed ID: 28125
    [No Abstract]   [Full Text] [Related]  

  • 31. Effect of haemoglobin oxygenation on Bohr proton release and CO2 excretion in the rainbow trout.
    Brauner CJ; Gilmour KM; Perry SF
    Respir Physiol; 1996 Oct; 106(1):65-70. PubMed ID: 8946578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of His HC3 (146) beta in the Bohr effect of human hemoglobin. Studies of native and N-ethylmaleimide-treated hemoglobin A and hemoglobin Cowtown (beta 146 His replaced by Leu).
    Shih T; Jones RT; Bonaventura J; Bonaventura C; Schneider RG
    J Biol Chem; 1984 Jan; 259(2):967-74. PubMed ID: 6693406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia.
    Ueda Y; Bookchin RM
    J Lab Clin Med; 1984 Aug; 104(2):146-59. PubMed ID: 6431043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The CO and NO Bohr effect of human hemoglobin with and without inositolhexaphosphate.
    de Bruin SH; Boen FJ; Rollema HS; van Beek GG
    Biophys Chem; 1977 Sep; 7(2):169-72. PubMed ID: 20174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The pKa values of two histidine residues in human haemoglobin, the Bohr effect, and the dipole moments of alpha-helices.
    Perutz MF; Gronenborn AM; Clore GM; Fogg JH; Shih DT
    J Mol Biol; 1985 Jun; 183(3):491-8. PubMed ID: 4020866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects.
    Sun DP; Zou M; Ho NT; Ho C
    Biochemistry; 1997 Jun; 36(22):6663-73. PubMed ID: 9184146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The magnitude of the Bohr effect profoundly influences the shape and position of the blood oxygen equilibrium curve.
    Malte H; Lykkeboe G; Wang T
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Apr; 254():110880. PubMed ID: 33358924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of Bohr group salt bridges in cooperativity in hemoglobin.
    Kilmartin JV; Imai K; Jones RT; Faruqui AR; Fogg J; Baldwin JM
    Biochim Biophys Acta; 1978 May; 534(1):15-25. PubMed ID: 26416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fixed acid and carbon dioxide Bohr effects as functions of hemoglobin-oxygen saturation and erythrocyte pH in the blood of the frog, Rana temporaria.
    Wells RM; Weber RE
    Pflugers Arch; 1985 Jan; 403(1):7-12. PubMed ID: 3920641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Saturation dependency of the Bohr effect: interactions among H-+, CO2, and DPG.
    Hlastala MP; Woodson RD
    J Appl Physiol; 1975 Jun; 38(6):1126-31. PubMed ID: 237871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.