BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7430127)

  • 1. Dissociation between mitochondria calcium ion release and pyridine nucleotide oxidation.
    Wolkowicz PE; McMillin-Wood J
    J Biol Chem; 1980 Nov; 255(21):10348-53. PubMed ID: 7430127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria.
    Beatrice MC; Palmer JW; Pfeiffer DR
    J Biol Chem; 1980 Sep; 255(18):8663-71. PubMed ID: 7410387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of mitochondrial Ca2+ efflux by NADP+ with maintenance of respiratory control.
    Vercesi AE
    An Acad Bras Cienc; 1985 Sep; 57(3):369-75. PubMed ID: 3832980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides.
    Nicholls DG; Brand MD
    Biochem J; 1980 Apr; 188(1):113-8. PubMed ID: 7406874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiration-dependent calcium ion uptake by two preparations of cardiac mitochondria. Effects of palmitoyl-coenzyme A and palmitoylcarnitine on calcium ion cycling and nicotinamide nucleotide reduction state.
    Wolkowicz PE; McMillin-Wood J
    Biochem J; 1980 Jan; 186(1):257-66. PubMed ID: 6154457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore.
    Zago EB; Castilho RF; Vercesi AE
    FEBS Lett; 2000 Jul; 478(1-2):29-33. PubMed ID: 10922464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the relationship between calcium and phosphate transport, transmembrane potential and acetoacetate-induced oxidation of pyridine nucleotides in rat-liver mitochondria.
    Siliprandi D; Siliprandi N; Toninello A
    Eur J Biochem; 1983 Jan; 130(1):173-5. PubMed ID: 6825686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP.
    Bernardes CF; Pereira da Silva L; Vercesi AE
    Biochim Biophys Acta; 1986 Jun; 850(1):41-8. PubMed ID: 2423127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the state of calcium ions in isolated rat liver mitochondria. II. Effects of phosphate and pH on Ca2+-induced Ca2+ release.
    Blaich G; Krell H; Täfler M; Pfaff E
    Hoppe Seylers Z Physiol Chem; 1984 Jan; 365(1):73-82. PubMed ID: 6201430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria.
    Bellomo G; Martino A; Richelmi P; Moore GA; Jewell SA; Orrenius S
    Eur J Biochem; 1984 Apr; 140(1):1-6. PubMed ID: 6705788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramitochondrial phospholipase activity and the effects of Ca2+ plus N-ethylmaleimide on mitochondrial function.
    Pfeiffer DR; Schmid PC; Beatrice MC; Schmid HH
    J Biol Chem; 1979 Nov; 254(22):11485-94. PubMed ID: 40983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria.
    Vercesi AE
    Arch Biochem Biophys; 1987 Jan; 252(1):171-8. PubMed ID: 3813533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-acetyl-p-benzoquinone imine induces Ca2+ release from mitochondria by stimulating pyridine nucleotide hydrolysis.
    Weis M; Kass GE; Orrenius S; Moldéus P
    J Biol Chem; 1992 Jan; 267(2):804-9. PubMed ID: 1730671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides.
    Lehninger AL; Vercesi A; Bababunmi EA
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1690-4. PubMed ID: 25436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of palmitoyl-CoA inhibition of Ca2+ uptake in liver and heart mitochondria.
    Beatrice MC; Pfeiffer DR
    Biochem J; 1981 Jan; 194(1):71-7. PubMed ID: 7305993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria.
    Lötscher HR; Winterhalter KH; Carafoli E; Richter C
    J Biol Chem; 1980 Oct; 255(19):9325-30. PubMed ID: 6773965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of palmitoyl-CoA binding with adenine nucleotide translocase on energization of mitochondria].
    Filippova SN; Bavilin VA; Panov AV
    Biull Eksp Biol Med; 1979 Sep; 88(9):297-9. PubMed ID: 42454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes.
    Rizzuto R; Pitton G; Azzone GF
    Eur J Biochem; 1987 Jan; 162(2):239-49. PubMed ID: 3803384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport.
    Fiskum G; Lehninger AL
    J Biol Chem; 1979 Jul; 254(14):6236-9. PubMed ID: 36390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria.
    Lê-Quôc D; Lê-Quôc K
    Arch Biochem Biophys; 1989 Sep; 273(2):466-78. PubMed ID: 2774563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.