These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 7430141)

  • 1. Mixed function oxidases in sterol metabolism. Source of reducing equivalents.
    Brady DR; Crowder RD; Hayes WJ
    J Biol Chem; 1980 Nov; 255(22):10624-9. PubMed ID: 7430141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed function oxidases in sterol metabolism. Separate routes for electron transfer from NADH and NADPH.
    Crowder RD; Brady DR
    J Biol Chem; 1979 Jan; 254(2):408-13. PubMed ID: 33169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative demethylation in sterol metabolism. Inhibition by NADH, a required cofactor.
    Brady DR
    J Biol Chem; 1981 Oct; 256(20):10442-8. PubMed ID: 7287717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometry of 4-methyl sterol oxidase of rat liver microsomes.
    Gaylor JL; Miyake Y; Yamano T
    J Biol Chem; 1975 Sep; 250(18):7159-67. PubMed ID: 240818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cytochrome b5 in 4alpha-methyl-oxidation and C5(6) desaturation of plant sterol precursors.
    Rahier A; Smith M; Taton M
    Biochem Biophys Res Commun; 1997 Jul; 236(2):434-7. PubMed ID: 9240456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant sterol biosynthesis. Identification and characterization of two distinct microsomal oxidative enzymatic systems involved in sterol C4-demethylation.
    Pascal S; Taton M; Rahier A
    J Biol Chem; 1993 Jun; 268(16):11639-54. PubMed ID: 8505296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total enzymic synthesis of cholesterol from lanosterol. Cytochrome b5-dependence of 4-methyl sterol oxidase.
    Fukushima H; Grinstead GF; Gaylor JL
    J Biol Chem; 1981 May; 256(10):4822-6. PubMed ID: 7228857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH.
    Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1992 Mar; 293(2):274-80. PubMed ID: 1311163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible mechanism of coupled NADPH oxidase and P-450 monooxygenase action.
    Jansson I; Schenkman JB
    Adv Exp Med Biol; 1981; 136 Pt A():145-63. PubMed ID: 7344455
    [No Abstract]   [Full Text] [Related]  

  • 10. Investigation of the component reactions of oxidative sterol demethylation. Role of an endogenous microsomal source of reducing equivalents.
    Bechtold MM; Delwiche CV; Comal K; Gaylor JL
    J Biol Chem; 1972 Dec; 247(23):7650-6. PubMed ID: 4404598
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of reducing equivalents from fatty acid oxidation in mixed-function oxidation: studies with 2-bromooctanoate in the perfused rat liver.
    Danis M; Kauffman FC; Evans RK; Thurman RG
    J Pharmacol Exp Ther; 1981 Nov; 219(2):383-8. PubMed ID: 7288627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):277-88. PubMed ID: 11229532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes.
    Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T
    Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of NADH in the support of steroid aromatization by human placental microsomes.
    Sheean LA; Meigs RA
    Steroids; 1983 Jul; 42(1):77-91. PubMed ID: 6424272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of reactive oxygen intermediates by human liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Cederbaum AI
    Mol Pharmacol; 1994 Jan; 45(1):150-7. PubMed ID: 8302274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-transport pathway of the NADH-dependent haem oxygenase system of rat liver microsomal fraction induced by cobalt chloride.
    Hino Y; Minakami S
    Biochem J; 1979 Feb; 178(2):323-9. PubMed ID: 36076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome P-450-dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation.
    Trzaskos JM; Bowen WD; Shafiee A; Fischer RT; Gaylor JL
    J Biol Chem; 1984 Nov; 259(21):13402-12. PubMed ID: 6208195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkane oxidation in Candida tropicalis.
    Gallo M; Bertrand JC; Roche B; Azoulay E
    Biochim Biophys Acta; 1973 Mar; 296(3):624-38. PubMed ID: 4143948
    [No Abstract]   [Full Text] [Related]  

  • 19. Acyl-CoA reductase and acyl-CoA: fatty alcohol acyl transferase in the microsomal preparation from the bovine meibomian gland.
    Kolattukudy PE; Rogers L
    J Lipid Res; 1986 Apr; 27(4):404-11. PubMed ID: 3459788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reduction of acetylpyridine adenine dinucleotide by NADH: is it a significant reaction of proton-translocating transhydrogenase, or an artefact?
    Stilwell SN; Bizouarn T; Jackson JB
    Biochim Biophys Acta; 1997 May; 1320(1):83-94. PubMed ID: 9186780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.