These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7430155)

  • 21. Phosphorylation and formation of hybrid enzyme species test the "half of sites" reactivity of Escherichia coli succinyl-CoA synthetase.
    Mann CJ; Mitchell T; Nishimura JS
    Biochemistry; 1991 Feb; 30(6):1497-503. PubMed ID: 1993168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for allosteric regulation of succinyl-CoA synthetase.
    Um HD; Klein C
    Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):821-6. PubMed ID: 8240297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positional oxygen isotope exchange as a probe for the mechanism of catalysis by Escherichia coli succinyl coenzyme A synthetase.
    Williams SP; Bridger WA
    Biochemistry; 1987 Jul; 26(14):4483-7. PubMed ID: 3311148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of GTP with the ATP-grasp domain of GTP-specific succinyl-CoA synthetase.
    Fraser ME; Hayakawa K; Hume MS; Ryan DG; Brownie ER
    J Biol Chem; 2006 Apr; 281(16):11058-65. PubMed ID: 16481318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of subunit interactions to the effectiveness of catalysis by succinyl coenzyme A synthetase.
    Bridger WA
    Curr Top Cell Regul; 1984; 24():345-55. PubMed ID: 6389023
    [No Abstract]   [Full Text] [Related]  

  • 26. [Reaction mechanism of succinyl CoA synthetase from pigeon thoracic muscle].
    Mikeladze DG; Matveeva LN; Severin SE
    Biokhimiia; 1978 Aug; 43(8):1458-67. PubMed ID: 570066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Capacity for alternating sites cooperativity in catalysis by succinyl-coenzyme A synthetase.
    Wolodko WT; O'Connor MD; Bridger WA
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2140-4. PubMed ID: 7017725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of nucleoside-diphosphate kinase from Pseudomonas aeruginosa: complex formation with succinyl-CoA synthetase.
    Kavanaugh-Black A; Connolly DM; Chugani SA; Chakrabarty AM
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5883-7. PubMed ID: 8016083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylated and dephosphorylated structures of pig heart, GTP-specific succinyl-CoA synthetase.
    Fraser ME; James MN; Bridger WA; Wolodko WT
    J Mol Biol; 2000 Jun; 299(5):1325-39. PubMed ID: 10873456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and sequencing of the cytoplasmic precursor to the alpha subunit of rat liver mitochondrial succinyl-CoA synthetase.
    Henning WD; Upton C; McFadden G; Majumdar R; Bridger WA
    Proc Natl Acad Sci U S A; 1988 Mar; 85(5):1432-6. PubMed ID: 3422742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate-dependent dissociation of malate thiokinase.
    Elwell M; Hersh LB
    J Biol Chem; 1979 Apr; 254(7):2434-8. PubMed ID: 429295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the nucleotide-binding site of Escherichia coli succinyl-CoA synthetase.
    Joyce MA; Fraser ME; Brownie ER; James MN; Bridger WA; Wolodko WT
    Biochemistry; 1999 Jun; 38(22):7273-83. PubMed ID: 10353839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical and structural characterization of the GTP-preferring succinyl-CoA synthetase from Thermus aquaticus.
    Joyce MA; Hayakawa K; Wolodko WT; Fraser ME
    Acta Crystallogr D Biol Crystallogr; 2012 Jul; 68(Pt 7):751-62. PubMed ID: 22751660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial translocation and processing of the precursor to the alpha-subunit of rat liver succinyl-CoA synthetase.
    Majumdar R; Bridger WA
    Biochem Cell Biol; 1990 Jan; 68(1):292-9. PubMed ID: 2350494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Affinity labeling of Escherichia coli histidyl-tRNA synthetase with reactive ATP analogues. Identification of labeled amino acid residues by matrix assisted laser desorption-ionization mass spectrometry.
    Gillet S; Hoang CB; Schmitter JM; Fukui T; Blanquet S; Hountondji C
    Eur J Biochem; 1996 Oct; 241(1):133-41. PubMed ID: 8898898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active enzyme sedimentation, sedimentation velocity, and sedimentation equilibrium studies of succinyl-CoA synthetases of porcine heart and Escherichia coli.
    Wolodko WT; Kay CM; Bridger WA
    Biochemistry; 1986 Sep; 25(19):5420-5. PubMed ID: 3535876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Succinyl-CoA synthetase structure-function relationships and other considerations.
    Nishimura JS
    Adv Enzymol Relat Areas Mol Biol; 1986; 58():141-72. PubMed ID: 3521216
    [No Abstract]   [Full Text] [Related]  

  • 38. Two glutamate residues, Glu 208 alpha and Glu 197 beta, are crucial for phosphorylation and dephosphorylation of the active-site histidine residue in succinyl-CoA synthetase.
    Fraser ME; Joyce MA; Ryan DG; Wolodko WT
    Biochemistry; 2002 Jan; 41(2):537-46. PubMed ID: 11781092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-directed mutagenesis of Escherichia coli succinyl-CoA synthetase. Histidine 142 alpha is a facilitative catalytic residue.
    Luo GX; Nishimura JS
    J Biol Chem; 1991 Nov; 266(31):20781-5. PubMed ID: 1939128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adenosine 5'-O-(3-thio)triphosphate, a substrate and potent inhibitor of Escherichia coli succinyl-CoA synthetase. Additional evidence for a cooperative alternating-sites mechanism.
    Nishimura JS; Mitchell T
    J Biol Chem; 1984 Aug; 259(15):9642-5. PubMed ID: 6378911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.