BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7430160)

  • 1. Preparation of 2-thioltryptophan-glucagon and (tryptophan-S-glucagon)2. Differences in binding to the glucagon receptor in the hepatic adenylate cyclase system.
    Wright DE; Rodbell M
    J Biol Chem; 1980 Nov; 255(22):10884-7. PubMed ID: 7430160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent glucagon derivatives. I. Synthesis and characterisation of fluorescent glucagon derivatives.
    Heithier H; Ward LD; Cantrill RC; Klein HW; Im MJ; Pollak G; Freeman B; Schiltz E; Peters R; Helmreich EJ
    Biochim Biophys Acta; 1988 Oct; 971(3):298-306. PubMed ID: 2844291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of nonspecific hydrophobic interactions in the biological activity of N epsilon-acyl derivatives of glucagon. Studies of conformation, receptor binding, and adenylate cyclase activation.
    Carrey EA; Epand RM
    J Biol Chem; 1982 Sep; 257(18):10624-30. PubMed ID: 6286664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor binding and adenylate cyclase activities of glucagon analogues modified in the N-terminal region.
    McKee RL; Pelton JT; Trivedi D; Johnson DG; Coy DH; Sueiras-Diaz J; Hruby VJ
    Biochemistry; 1986 Apr; 25(7):1650-6. PubMed ID: 3011069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semisynthetic D-His1,N epsilon-acetimidoglucagon: structure-function relationships.
    Mahrenholz AM; Flanders KC; Hoosein NM; Gurd FR; Gurd RS
    Arch Biochem Biophys; 1987 Sep; 257(2):379-86. PubMed ID: 2821912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of specific trinitrophenylation of the lysine epsilon amino group of glucagon on receptor binding and adenylate cyclase activation.
    Liepnieks JJ; Epand RM
    Arch Biochem Biophys; 1983 Aug; 225(1):102-9. PubMed ID: 6311099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic peptide antagonists of glucagon.
    Unson CG; Andreu D; Gurzenda EM; Merrifield RB
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4083-7. PubMed ID: 3035568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of amidinated glucagons.
    Wright DE; Rodbell M
    Eur J Biochem; 1980 Oct; 111(1):11-6. PubMed ID: 7439177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural requirements for glucagon receptor binding and activation of adenylate cyclase in liver. Study of chemically modified forms of the hormone, including N alpha-trinitrophenyl glucagon, an antagonist.
    Epand RM; Rosselin G; Hoa DH; Cote TE; Laburthe M
    J Biol Chem; 1981 Feb; 256(3):1128-32. PubMed ID: 6256384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor occupancy and adenylate cyclase activation in rat liver and heart membranes by 10 glucagon analogs modified in position 2,3, 4, 25, 27 and/or 29.
    Robberect P; Damien C; Moroder L; Coy DH; Wünsch E; Christophe J
    Regul Pept; 1988 May; 21(1-2):117-28. PubMed ID: 2839870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucagon antagonists: contribution to binding and activity of the amino-terminal sequence 1-5, position 12, and the putative alpha-helical segment 19-27.
    Unson CG; Gurzenda EM; Iwasa K; Merrifield RB
    J Biol Chem; 1989 Jan; 264(2):789-94. PubMed ID: 2536024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoaffinity labeling of the glucagon receptor with a new glucagon analog.
    Wright DE; Horuk R; Rodbell M
    Eur J Biochem; 1984 May; 141(1):63-7. PubMed ID: 6327311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucagon1-6 binds to the glucagon receptor and activates hepatic adenylate cyclase.
    Wright DE; Rodbell M
    J Biol Chem; 1979 Jan; 254(2):268-9. PubMed ID: 216670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational and biological properties of a covalently linked dimer of glucagon. Reaction of mono- and bifunctional sulfenyl halides.
    Epand RM; Cote TE
    Biochim Biophys Acta; 1976 Dec; 453(2):365-73. PubMed ID: 999894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational and biological properties of di[delta-(5-nitro-2-pyrimidyl)ornithine 17,18]glucagon. Role of the arginine residues.
    Epand RM; Liepnieks JJ
    J Biol Chem; 1983 Jan; 258(1):203-7. PubMed ID: 6294099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of a glucagon photoaffinity label to rat liver plasma membranes and its effect on adenylate cyclase activity before and after photolysis.
    Demoliou-Mason C; Epand RM
    Biochemistry; 1982 Apr; 21(9):1989-96. PubMed ID: 7093224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential acid stabilities of citraconylated amino groups of glucagon. Preparation of N alpha-citraconyl glucagon and evaluation of its biological properties.
    Liepnieks JJ; Epand RM
    Biochim Biophys Acta; 1982 Oct; 707(2):171-7. PubMed ID: 6291617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N alpha-Malto-glucagon and N alpha-malto, S-methyl methionine27-glucagon: preparation and characterization of two partial agonists.
    Coolican SA; Gurd RS
    Arch Biochem Biophys; 1984 Aug; 232(2):450-7. PubMed ID: 6380408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucagon-stimulable adenylyl cyclase in rat liver. Effects of chronic uremia and intermittent glucagon administration.
    Dighe RR; Rojas FJ; Birnbaumer L; Garber AJ
    J Clin Invest; 1984 Apr; 73(4):1004-12. PubMed ID: 6323531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glucagon receptor of rat liver plasma membrane can couple to adenylate cyclase without activating it.
    Houslay MD; Metcalfe JC; Warren GB; Hesketh TR; Smith GA
    Biochim Biophys Acta; 1976 Jun; 436(2):489-94. PubMed ID: 179598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.