BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 7430260)

  • 1. A critical temperature transition of K+-Na+ exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Apr; 103(1):87-95. PubMed ID: 7430260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple fractions of sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Sep; 104(3):443-59. PubMed ID: 7419615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and slow fractions of K+ flux in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1979 Mar; 98(3):539-52. PubMed ID: 438298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium-sodium distribution in human lymphocytes: description by the association-induction hypothesis.
    Negendank W; Shaller C
    J Cell Physiol; 1979 Jan; 98(1):95-105. PubMed ID: 762204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of metabolic inhibition on ion contents and sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1982 Mar; 110(3):291-9. PubMed ID: 6282900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does reduced external K+ concentration affect the rate of Na+ efflux? Evidence against the K-Na coupled pump but in support of the association-induction hypothesis.
    Ling GN
    Physiol Chem Phys; 1978; 10(4):353-65. PubMed ID: 311014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependence of ATP level, organic phosphate production and Na,K-ATPase in human lymphocytes.
    Negendank W; Shaller C
    Physiol Chem Phys; 1982; 14(6):513-8. PubMed ID: 6314402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-exchange of sodium in human lymphocytes.
    Negendank W; Shaller C
    Biophys J; 1984 Sep; 46(3):331-42. PubMed ID: 6487733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The physical state of potassium in the human lymphocyte: a review.
    Negendank W
    Scanning Microsc; 1989 Sep; 3(3):865-72; discussion 872-5. PubMed ID: 2694357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cooperative transition theory applied to the kinetics of ionic exchanges in cells.
    Negendank W
    Cell Biophys; 1988 Oct; 13(2):93-117. PubMed ID: 2464436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of temperature and ouabain on steady-state Na and K exchanges in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1982 Dec; 113(3):440-54. PubMed ID: 6294129
    [No Abstract]   [Full Text] [Related]  

  • 12. Cooperative interaction among cell surface sites: evidence in support of the surface adsorption theory of cellular electrical potentials.
    Ling GN; Fisher A
    Physiol Chem Phys Med NMR; 1983; 15(5):369-78. PubMed ID: 6609378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of temperature on K, Na and water movements in isolated hepatocytes].
    Poggioli J; Claret-Berthon B; Mazet JL; Pinçon-Raymond M; Claret M
    C R Seances Acad Sci D; 1979 Jul; 289(2):117-20. PubMed ID: 117914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous net accumulation of both K+ and Na+ by lymphocytes at 0 degrees C.
    Negendank W; Shaller C
    Biochim Biophys Acta; 1981 Jan; 640(1):368-73. PubMed ID: 7213692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K+ fluxes mediated by Na(+)-K(+)-Cl- cotransport and Na(+)-K(+)-ATPase pumps in renal tubule cell lines transformed by wild-type and temperature-sensitive strains of Simian virus 40.
    Vandewalle A; Vuillemin T; Teulon J; Baudouin B; Wahbe F; Bens M; Cassingéna R; Ronco P
    J Cell Physiol; 1993 Mar; 154(3):466-77. PubMed ID: 8382207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motional characteristics of K+ and Na+ in intact and sucrose-permeabilized rat lymphocytes.
    Bogner P; Berke T; Kellermayer M
    Physiol Chem Phys Med NMR; 1992; 24(4):281-8. PubMed ID: 1296210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physical theory of the living state: application to water and solute distribution.
    Ling GN
    Scanning Microsc; 1988 Jun; 2(2):899-913. PubMed ID: 3399856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water permeability of mammalian cells as a function of temperature in the presence of dimethylsulfoxide: correlation with the state of the membrane lipids.
    Rule GS; Law P; Kruuv J; Lepock JR
    J Cell Physiol; 1980 Jun; 103(3):407-16. PubMed ID: 6249829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The role of ionic transporters in the long-term regulation of the water content in animal cells. The mathematical model and real lymphoid cells].
    Vereninov AA; Glushankova LN; Rubashkin AA
    Tsitologiia; 1995; 37(12):1151-66. PubMed ID: 8714351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of reconstituted Na,K-ATPase vesicles by isolated lymphocytes measured by FACS, confocal microscopy and spectrofluorometry.
    Anner BM; Volet B
    Cell Biochem Biophys; 1999; 30(3):437-54. PubMed ID: 10403060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.