These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7430267)

  • 1. Protein synthesis and degradation in growth regulation in rat embryo fibroblasts: role of fast-turnover and slow-turnover protein.
    Amenta JS; Sargus MJ; Brocher SC
    J Cell Physiol; 1980 Oct; 105(1):51-61. PubMed ID: 7430267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of lysosomes in protein turnover: catch-up proteolysis after release from NH4Cl inhibition.
    Amenta JS; Brocher SC
    J Cell Physiol; 1980 Feb; 102(2):259-66. PubMed ID: 7372725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacement perfusion of cultured eucaryotic cells: a method for the accurate measurement of the rates of growth, protein synthesis, and protein turnover.
    Spanier AM; Clark WA; Zak R
    J Cell Biochem; 1984; 26(1):47-64. PubMed ID: 6392311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium transport and cellular distribution in quiescent and serum-stimulated primary cultures of bone cells and skin fibroblasts.
    Eilam Y; Szydel N
    J Cell Physiol; 1981 Feb; 106(2):225-34. PubMed ID: 7217213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of basal protein degradation in rat embryo fibroblasts by cycloheximide: correlation with activities of lysosomal proteases.
    Amenta JS; Sargus MJ; Baccino FM
    J Cell Physiol; 1978 Dec; 97(3 Pt 1):267-83. PubMed ID: 730770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of increased proteolysis in the atrophy and arrest of proliferation in serum-deprived fibroblasts.
    Gronostajski RM; Goldberg AL; Pardee AB
    J Cell Physiol; 1984 Oct; 121(1):189-98. PubMed ID: 6384241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serum deprivation and the turnover of short-, medium- and long-lived proteins in 3T3 and HeLa S-3 cells.
    Yin Z; Wheatley DN
    Cytobios; 1994; 79(319):201-21. PubMed ID: 7535675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of intracellular endogenous proteins following serum deprivation in mammalian cell cultures: theoretical considerations of the role of very-fast turnover proteins in growth regulation.
    Wheatley DN; Yin Z
    Acta Biol Hung; 1991; 42(1-3):161-74. PubMed ID: 1844308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein turnover in senescent cultured chick embryo fibroblasts.
    Kaftory A; Hershko A; Fry M
    J Cell Physiol; 1978 Feb; 94(2):147-60. PubMed ID: 621215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular protein degradation in growing, in density-inhibited, and in serum-restricted fibroblast cultures.
    Hendil KB
    J Cell Physiol; 1977 Sep; 92(3):353-64. PubMed ID: 198415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression.
    Ferrara P; Andermarcher E; Bossis G; Acquaviva C; Brockly F; Jariel-Encontre I; Piechaczyk M
    Oncogene; 2003 Mar; 22(10):1461-74. PubMed ID: 12629509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased heme content and cessation of cell growth in cultured chick embryo fibroblasts in the presence of horse serum: stimulation of heme synthesis and cell growth by iron.
    Verger C; Imbenotte J
    J Cell Physiol; 1982 Nov; 113(2):193-6. PubMed ID: 7174727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein turnover in growing cultures of Bacillus megaterium.
    Chaloupka J; Strnadová M; Moravcová J
    Acta Biol Med Ger; 1981; 40(10-11):1227-34. PubMed ID: 6805188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the vacuolar apparatus in augmented protein degradation in cultured fibroblasts.
    Amenta JS; Sargus MJ; Venkatesan S; Shinozuka H
    J Cell Physiol; 1978 Jan; 94(1):77-86. PubMed ID: 22552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory costs and rate of protein turnover in the roots of a fast-growing (Dactylis glomerata L.) and a slow-growing (Festuca ovina L.) grass species.
    Scheurwater I; Dünnebacke M; Eising R; Lambers H
    J Exp Bot; 2000 Jun; 51(347):1089-97. PubMed ID: 10948236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein degradation in CHL V79 cells during and after exposure to 43 degrees C.
    Heynen M; Frey HE; Kruuv J; Lepock JR
    Radiat Res; 1989 Jul; 119(1):73-87. PubMed ID: 2756111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density-dependent inhibition of mouse embryo fibroblast growth: involvement of IGFBP-3.
    Blat C; Villaudy J; Harel L
    Exp Cell Res; 1994 Nov; 215(1):114-8. PubMed ID: 7525322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinate changes of myosin light and heavy chain isoforms during forced fiber type transitions in rabbit muscle.
    Leeuw T; Pette D
    Dev Genet; 1996; 19(2):163-8. PubMed ID: 8900049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxy-terminal residues of mouse thymidine kinase are essential for rapid degradation in quiescent cells.
    Sutterluety H; Bartl S; Karlseder J; Wintersberger E; Seiser C
    J Mol Biol; 1996 Jun; 259(3):383-92. PubMed ID: 8676376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Kinetics of protein degradation in diploid and trisomic human fibroblasts].
    Podobed OV; Golubeva NV; Kukharenko VI; Del'vig AA
    Mol Gen Mikrobiol Virusol; 1988 May; (5):41-5. PubMed ID: 3412361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.