These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 743190)
1. Glossy mutants of maize. VIII. Accumulation of fatty aldehydes in surface waxes of gl5 maize seedlings. Bianchi G; Avato P; Salamini F Biochem Genet; 1978 Oct; 16(9-10):1015-21. PubMed ID: 743190 [TBL] [Abstract][Full Text] [Related]
2. Effect of leaf surface waxes on leaf colonization by Pantoea agglomerans and Clavibacter michiganensis. Marcell LM; Beattie GA Mol Plant Microbe Interact; 2002 Dec; 15(12):1236-44. PubMed ID: 12481996 [TBL] [Abstract][Full Text] [Related]
3. Very-long-chain 3-hydroxy fatty acids, 3-hydroxy fatty acid methyl esters and 2-alkanols from cuticular waxes of Aloe arborescens leaves. Racovita RC; Peng C; Awakawa T; Abe I; Jetter R Phytochemistry; 2015 May; 113():183-94. PubMed ID: 25200334 [TBL] [Abstract][Full Text] [Related]
4. Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Zheng J; He C; Qin Y; Lin G; Park WD; Sun M; Li J; Lu X; Zhang C; Yeh CT; Gunasekara CJ; Zeng E; Wei H; Schnable PS; Wang G; Liu S Plant J; 2019 Feb; 97(3):530-542. PubMed ID: 30375131 [TBL] [Abstract][Full Text] [Related]
5. [Chemical compositions of n-alkanols in smoke from rice and maize straw combustion]. Liu G; Li JH; Wu D; Xu H Huan Jing Ke Xue; 2014 Mar; 35(3):870-8. PubMed ID: 24881372 [TBL] [Abstract][Full Text] [Related]
6. Leaf sheath cuticular waxes on bloomless and sparse-bloom mutants of Sorghum bicolor. Jenks MA; Rich PJ; Rhodes D; Ashwort EN; Axtell JD; Din CK Phytochemistry; 2000 Jul; 54(6):577-84. PubMed ID: 10963450 [TBL] [Abstract][Full Text] [Related]
7. Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development. Dietrich CR; Perera MA; D Yandeau-Nelson M; Meeley RB; Nikolau BJ; Schnable PS Plant J; 2005 Jun; 42(6):844-61. PubMed ID: 15941398 [TBL] [Abstract][Full Text] [Related]
8. Analysis of aliphatic waxes associated with root periderm or exodermis from eleven plant species. Kosma DK; Rice A; Pollard M Phytochemistry; 2015 Sep; 117():351-362. PubMed ID: 26143051 [TBL] [Abstract][Full Text] [Related]
9. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize. Loneman DM; Peddicord L; Al-Rashid A; Nikolau BJ; Lauter N; Yandeau-Nelson MD PLoS One; 2017; 12(7):e0180850. PubMed ID: 28700694 [TBL] [Abstract][Full Text] [Related]
10. Molecular Characterization of TaFAR1 Involved in Primary Alcohol Biosynthesis of Cuticular Wax in Hexaploid Wheat. Wang Y; Wang M; Sun Y; Hegebarth D; Li T; Jetter R; Wang Z Plant Cell Physiol; 2015 Oct; 56(10):1944-61. PubMed ID: 26220905 [TBL] [Abstract][Full Text] [Related]
11. Biological origins of normal-chain hydrocarbons: a pathway model based on cuticular wax analyses of maize silks. Perera MA; Qin W; Yandeau-Nelson M; Fan L; Dixon P; Nikolau BJ Plant J; 2010 Nov; 64(4):618-32. PubMed ID: 21070415 [TBL] [Abstract][Full Text] [Related]
12. The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. Li L; Li D; Liu S; Ma X; Dietrich CR; Hu HC; Zhang G; Liu Z; Zheng J; Wang G; Schnable PS PLoS One; 2013; 8(12):e82333. PubMed ID: 24324772 [TBL] [Abstract][Full Text] [Related]
13. Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves. van Maarseveen C; Jetter R Phytochemistry; 2009 May; 70(7):899-906. PubMed ID: 19446855 [TBL] [Abstract][Full Text] [Related]
14. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides. Racovita RC; Jetter R Phytochemistry; 2016 Oct; 130():252-61. PubMed ID: 27402630 [TBL] [Abstract][Full Text] [Related]
15. Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Xia Y; Nikolau BJ; Schnable PS Plant Cell; 1996 Aug; 8(8):1291-304. PubMed ID: 8776898 [TBL] [Abstract][Full Text] [Related]
16. Huang H; Ayaz A; Zheng M; Yang X; Zaman W; Zhao H; Lü S Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457268 [No Abstract] [Full Text] [Related]
17. IRREGULAR POLLEN EXINE1 Is a Novel Factor in Anther Cuticle and Pollen Exine Formation. Chen X; Zhang H; Sun H; Luo H; Zhao L; Dong Z; Yan S; Zhao C; Liu R; Xu C; Li S; Chen H; Jin W Plant Physiol; 2017 Jan; 173(1):307-325. PubMed ID: 28049856 [TBL] [Abstract][Full Text] [Related]
18. Cuticular waxes on eceriferum mutants of Arabidopsis thaliana. Rashotte AM; Jenks MA; Feldmann KA Phytochemistry; 2001 May; 57(1):115-23. PubMed ID: 11336252 [TBL] [Abstract][Full Text] [Related]
19. Long chain oxoaldehydes and oxoalcohols from esters as major constituents of the surface lipids of Manduca sexta pupae in diapause. Buckner JS; Nelson DR; Hakk H; Pomonis JG J Biol Chem; 1984 Jul; 259(13):8452-60. PubMed ID: 6736038 [TBL] [Abstract][Full Text] [Related]
20. Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Hargrove JL; Greenspan P; Hartle DK Exp Biol Med (Maywood); 2004 Mar; 229(3):215-26. PubMed ID: 14988513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]