These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7432185)

  • 1. The relation between membrane potential and the transport activity of system A and L in plasma membrane vesicles of the Ehrlich cell.
    Kilberg MS; Christensen HN
    Membr Biochem; 1980; 3(1-2):155-68. PubMed ID: 7432185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energization of amino acid transport in energy-depleted Ehrlich cells and plasma membrane vesicles.
    Ohsawa M; Kilberg MS; Kimmel G; Christensen HN
    Biochim Biophys Acta; 1980 Jun; 599(1):175-90. PubMed ID: 7397146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-dependent amino acid transport in reconstituted membrane vesicles from Ehrlich ascites cell plasma membranes.
    Bardin C; Johnstone RM
    J Biol Chem; 1978 Mar; 253(5):1725-32. PubMed ID: 564350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino Acid Transport and stimulation by substrates in the absence of a Na2+ electrochemical potential gradient.
    Heinz A; Jackson JW; Richey BE; Sachs G; Schafer JA
    J Membr Biol; 1981; 62(1-2):149-60. PubMed ID: 7277474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of protein dissociation in the transport of acidic amino acids by the Ehrlich ascites tumor cell.
    Garcia-Sancho J; Sanchez A; Christensen HN
    Biochim Biophys Acta; 1977 Jan; 464(2):295-312. PubMed ID: 12815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple and efficient method for reconstitution of amino acid and glucose transport systems from Ehrlich ascites cells.
    McCormick JI; Tsang D; Johnstone RM
    Arch Biochem Biophys; 1984 Jun; 231(2):355-65. PubMed ID: 6732237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of neutral amino acid transport from partially purified membrane components from Ehrlich ascites tumor cells.
    Cecchini G; Payne GS; Oxender DL
    J Supramol Struct; 1977; 7(3-4):481-7. PubMed ID: 567720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of transmembrane potential on two Na+-dependent transport systems for neutral amino acids.
    Valdeolmillos M; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1986 Jun; 858(1):181-7. PubMed ID: 3707961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-dependent L-serine transport in plasma membrane vesicles isolated from Ehrlich cells by two-phase compartmentation.
    Luque P; Márquez J; Núñez de Castro I; Medina MA
    J Membr Biol; 1991 Sep; 123(3):247-54. PubMed ID: 1744903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+-dependent amino acid transport in plasma membrane vesicles from Ehrlich ascites cells.
    Colombini M; Johnstone RM
    J Membr Biol; 1974; 15(3):261-76. PubMed ID: 4838040
    [No Abstract]   [Full Text] [Related]  

  • 12. Bimodal effects of cellular amino acids on Na+-dependent amino acid transport in Ehrlich cells.
    Johnstone RM; Laris PC
    Biochim Biophys Acta; 1980 Jul; 599(2):715-30. PubMed ID: 7407111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of amino acids in reconstituted vesicles derived from plasma membranes of Ehrlich ascites cells.
    Johnstone RM; Bardin C
    J Cell Physiol; 1976 Dec; 89(4):801-4. PubMed ID: 1034639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Spectrophotometric measurements.
    Kragh-Hansen U; Jørgensen KE; Sheikh MI
    Biochem J; 1982 Nov; 208(2):359-68. PubMed ID: 7159404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and transport applications of 3-aminobicyclo[3.2.1] octane-3-carboxylic acids.
    Christensen HN; Handlogten ME; Vadgama JV; de la Cuesta E; Ballesteros P; Trigo GG; Avendaño C
    J Med Chem; 1983 Oct; 26(10):1374-8. PubMed ID: 6413692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutral amino acid transport by membrane vesicles of Streptococcus cremoris is subject to regulation by internal pH.
    Driessen AJ; Kodde J; de Jong S; Konings WN
    J Bacteriol; 1987 Jun; 169(6):2748-54. PubMed ID: 3108240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular size of a Na(+)-dependent amino acid transporter in Ehrlich ascites cell plasma membranes estimated by radiation inactivation.
    McCormick JI; Jetté M; Potier M; Béliveau R; Johnstone RM
    Biochemistry; 1991 Apr; 30(15):3704-9. PubMed ID: 2015226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of the membrane oxidoreduction system in stimulating amino acid uptake in Ehrlich ascites tumor cells.
    Yamamoto S; Kawasaki T
    Biochim Biophys Acta; 1981 Jun; 644(2):192-200. PubMed ID: 7260073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidic amino acid transport in animal cells and tissues.
    Lerner J
    Comp Biochem Physiol B; 1987; 87(3):443-57. PubMed ID: 3304825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of (DL)-propranolol and Ca2+ on membrane potential and amino acid transport in Ehrlich ascites tumor cells.
    Pershadsingh HA; Johnstone RM; Laris PC
    Biochim Biophys Acta; 1978 May; 509(2):360-73. PubMed ID: 26402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.