These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7433989)

  • 1. Subcellular origin of cholinergic transmitter release from mouse brain.
    Carroll PT; Aspry JM
    Science; 1980 Nov; 210(4470):641-2. PubMed ID: 7433989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous release of acetylcholine and acetylhomocholine from mouse forebrain minces: cytoplasmic or vesicular origin.
    Carroll PT
    Neurochem Res; 1983 Oct; 8(10):1271-83. PubMed ID: 6140647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous and evoked release of acetylcholine and a cholinergic false transmitter from brain slices: comparison to true and false transmitter in subcellular stores.
    Boksa P; Collier B
    Neuroscience; 1980; 5(9):1517-32. PubMed ID: 6106911
    [No Abstract]   [Full Text] [Related]  

  • 4. False transmitters in the cholinergic system: implications for the vesicle theory of transmitter storage and release.
    Whittaker VP; Luqmani YA
    Gen Pharmacol; 1980; 11(1):7-14. PubMed ID: 6102535
    [No Abstract]   [Full Text] [Related]  

  • 5. Acetylcholine changes underlying transmission of a single nerve impulse in the presence of 4-aminopyridine in Torpedo.
    Corthay J; Dunant Y; Loctin F
    J Physiol; 1982 Apr; 325():461-79. PubMed ID: 6286942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are vesicles necessary for release of acetylcholine at cholinergic synapses?
    Tauc L
    Biochem Pharmacol; 1979 Dec; 28(24):3493-8. PubMed ID: 231444
    [No Abstract]   [Full Text] [Related]  

  • 7. Cholinergic vesicles: ability to empty and refill independently of cytoplasmic acetylcholine.
    Carrol PT; Nelson SH
    Science; 1978 Jan; 199(4324):85-6. PubMed ID: 17569492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship of transmitter release and storage to fine structure in a sympathetic ganglion.
    Birks RI
    J Neurocytol; 1974 Jun; 3(2):133-60. PubMed ID: 4366332
    [No Abstract]   [Full Text] [Related]  

  • 9. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis.
    Bao H; Daniels RW; MacLeod GT; Charlton MP; Atwood HL; Zhang B
    J Neurophysiol; 2005 Sep; 94(3):1888-903. PubMed ID: 15888532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles.
    Weihe E; Tao-Cheng JH; Schäfer MK; Erickson JD; Eiden LE
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3547-52. PubMed ID: 8622973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empty synaptic vesicles recycle and undergo exocytosis at vesamicol-treated motor nerve terminals.
    Parsons RL; Calupca MA; Merriam LA; Prior C
    J Neurophysiol; 1999 Jun; 81(6):2696-700. PubMed ID: 10368389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous and potassium-induced release of acetylcholine from mouse forebrain minces.
    Carroll PT; Aspry JA
    Neuroscience; 1981; 6(12):2555-9. PubMed ID: 6275298
    [No Abstract]   [Full Text] [Related]  

  • 13. Quantal transmitter secretion from myocytes loaded with acetylcholine.
    Dan Y; Poo MM
    Nature; 1992 Oct; 359(6397):733-6. PubMed ID: 1436036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbic acid, an endogenous factor required for acetylcholine release from the synaptic vesicles.
    Kuo CH; Yoshida H
    Jpn J Pharmacol; 1980 Aug; 30(4):481-92. PubMed ID: 7206361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the acetylcholine transport blocker 2-(4-phenylpiperidino) cyclohexanol (AH5183) on the subcellular storage and release of acetylcholine in mouse brain.
    Carroll PT
    Brain Res; 1985 Dec; 358(1-2):200-9. PubMed ID: 4075114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors required for Ca-sensitive acetylcholine release from crude synaptic vesicles.
    Hata F; Kuo CH; Matsuda T; Yoshida H
    J Neurochem; 1976 Jul; 27(1):139-44. PubMed ID: 956822
    [No Abstract]   [Full Text] [Related]  

  • 17. Saturable acetylcholine transport into purified cholinergic synaptic vesicles.
    Michaelson DM; Angel I
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2048-52. PubMed ID: 6941269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central cholinergic synaptic vesicle loading obeys the set-point model in Drosophila.
    Cash F; Vernon SW; Phelan P; Goodchild J; Baines RA
    J Neurophysiol; 2016 Feb; 115(2):843-50. PubMed ID: 26655826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism and subcellular distribution of N-amino-N,N-dimethylaminoethanol (N-aminodeanol) in rat striatal synaptosomes.
    Newton MW; Jenden DJ
    J Pharmacol Exp Ther; 1985 Oct; 235(1):135-46. PubMed ID: 4045718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release.
    Krisanova NV; Trikash IO; Borisova TA
    Neurochem Int; 2009 Dec; 55(8):724-31. PubMed ID: 19631248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.