These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7434792)

  • 1. Bistability in a model of microbial product formation.
    Guthke R; Knorre WA
    Z Allg Mikrobiol; 1980; 20(7):441-7. PubMed ID: 7434792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase shifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online.
    Bapat PM; Das D; Dave NN; Wangikar PP
    J Biotechnol; 2006 Dec; 127(1):115-28. PubMed ID: 16904217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical model for microbial growth under limitation by conservative substrates.
    Nyholm N
    Biotechnol Bioeng; 1976 Aug; 18(8):1043-56. PubMed ID: 953167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromixing and the steady-state performance of bioreactors using recombinant bacteria--analysis through a reversed two-environment model.
    Patnaik PR
    J Chem Technol Biotechnol; 1994 Dec; 61(4):337-42. PubMed ID: 7765701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of soluble microbial product formation in substrate-sufficient batch culture of activated sludge.
    Liu Y; Rols JL
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):605-8. PubMed ID: 12172633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structured kinetic model to represent the utilization of multiple substrates in complex media during rifamycin B fermentation.
    Bapat PM; Bhartiya S; Venkatesh KV; Wangikar PP
    Biotechnol Bioeng; 2006 Mar; 93(4):779-90. PubMed ID: 16302259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox.
    Snoep JL; Jensen PR; Groeneveld P; Molenaar D; Kholodenko BN; Westerhoff HV
    Biochem Mol Biol Int; 1994 Aug; 33(5):1023-32. PubMed ID: 7987249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes.
    Jenzsch M; Gnoth S; Beck M; Kleinschmidt M; Simutis R; Lübbert A
    J Biotechnol; 2006 Dec; 127(1):84-94. PubMed ID: 16962679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation.
    Thatipamala R; Rohani S; Hill GA
    Biotechnol Bioeng; 1992 Jun; 40(2):289-97. PubMed ID: 18601115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of penicillin production by semicontinuous fermenters.
    Giona AR; Marrelli L; Toro L
    Biotechnol Bioeng; 1976 Apr; 18(4):473-92. PubMed ID: 1268327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation.
    Gnoth S; Jenzsch M; Simutis R; Lübbert A
    Bioprocess Biosyst Eng; 2008 Jan; 31(1):41-6. PubMed ID: 17929060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Equations of the relationship of biomass growth and metabolic product biosynthesis in the presence of an inhibition effect].
    Biriukov VV
    Antibiotiki; 1980 Oct; 25(10):738-43. PubMed ID: 7425592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of microbial growth kinetics on steady state multiplicity and stability of a two-step nitrification (SHARON) model.
    Volcke EI; Sbarciog M; Loccufier M; Vanrolleghem PA; Noldus EJ
    Biotechnol Bioeng; 2007 Nov; 98(4):882-93. PubMed ID: 17461421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Method of calculating the specific growth rate of microorganisms by measurements of the substrate or product concentration].
    Petrova TA; Pozmogova IN; Rabotnova IL; Karavaĭko GI
    Mikrobiologiia; 1981; 50(5):934-7. PubMed ID: 7033737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex dynamics of microbial competition in the gradostat.
    Gaki A; Theodorou A; Vayenas DV; Pavlou S
    J Biotechnol; 2009 Jan; 139(1):38-46. PubMed ID: 18809443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of microbial growth including an intermediate. I. Growth in batch cultures.
    Petrova TA; Knorre WA; Guthke R; Bergter F
    Z Allg Mikrobiol; 1977; 17(7):531-42. PubMed ID: 602263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic analysis of lactic acid fermentation in membrane bioreactor.
    Zhao Z; Chen L
    J Theor Biol; 2009 Mar; 257(2):270-8. PubMed ID: 19135457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interval observers for biochemical processes with uncertain kinetics and inputs.
    Rapaport A; Dochain D
    Math Biosci; 2005 Feb; 193(2):235-53. PubMed ID: 15748732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.