These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 743571)

  • 1. Global flow equations for membrane transport from local equations of motion: I. The general case for (n-1) nonelectrolyte solutes plus water.
    Mikulecky DC
    Bull Math Biol; 1978; 40(6):791-805. PubMed ID: 743571
    [No Abstract]   [Full Text] [Related]  

  • 2. Global flow equations for membrane transport from local equations of motion-II. The case of a single nonelectrolyte solute plus water.
    Mikulecky DC
    Bull Math Biol; 1979; 41(5):629-40. PubMed ID: 540180
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes.
    Andreoli TE; Dennis VW; Weigl AM
    J Gen Physiol; 1969 Feb; 53(2):133-56. PubMed ID: 5764743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of alkyl homologs across synthetic and biological membranes: a new model for chain length-activity relationships.
    Yalkowsky SH; Flynn GL
    J Pharm Sci; 1973 Feb; 62(2):210-7. PubMed ID: 4686391
    [No Abstract]   [Full Text] [Related]  

  • 5. Experimentally observed effects of carriers on the electrical properties of bilayer membranes--equilibrium domain. With a contribution on the molecular basis of ion selectivity.
    Szabo G; Eisenman G; Laprade R; Ciani SM; Krasne S
    Membranes; 1973; 2():179-328. PubMed ID: 4585227
    [No Abstract]   [Full Text] [Related]  

  • 6. A new theory of transport for cell membrane pores. I. General theory and application to red cell.
    Levitt DG
    Biochim Biophys Acta; 1974 Nov; 373(1):115-31. PubMed ID: 4429725
    [No Abstract]   [Full Text] [Related]  

  • 7. Nonelectrolyte diffusion through lecithin-water lamellar phases and red-cell membranes.
    Lange Y; Bobo CM; Solomon AK
    Biochim Biophys Acta; 1974 Mar; 339(3):347-58. PubMed ID: 4858059
    [No Abstract]   [Full Text] [Related]  

  • 8. A continuum mechanical approach to the flow equations for membrane transport. I. Water flow.
    Mikulecky DC
    Biophys J; 1972 Dec; 12(12):1642-60. PubMed ID: 4655664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of the Kedem-Katchalsky equations.
    Slezak A; Turczynski B
    Biophys Chem; 1986 Jul; 24(2):173-8. PubMed ID: 3756309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport through deformable matrices.
    Silberberg A
    Biorheology; 1989; 26(2):291-313. PubMed ID: 2605334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian motion in biological membranes.
    Saffman PG; Delbrück M
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3111-3. PubMed ID: 1059096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [New method of derivation of practical Kedem-Katchalsky membrane transport equations].
    Jarzyńska M
    Polim Med; 2005; 35(4):19-24. PubMed ID: 16619794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane transport an interdisciplinary approach.
    Kotyk A; Janácek K
    Biomembranes; 1977; 9():3-348. PubMed ID: 138453
    [No Abstract]   [Full Text] [Related]  

  • 14. Depth-dependent fluorescent quenching in micelles and membranes.
    Blatt E; Sawyer WH
    Biochim Biophys Acta; 1985 Jun; 822(1):43-62. PubMed ID: 3890948
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of non-well-mixed compartment and bulk flow on diffusion through a pore.
    Wang CY
    Math Biosci; 1989 Jul; 95(1):99-109. PubMed ID: 2520180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note on the validity of constant field assumption in relation to the exact solution of Nernst--Planck equations.
    Shinagawa Y
    J Theor Biol; 1979 Nov; 81(2):333-40. PubMed ID: 537375
    [No Abstract]   [Full Text] [Related]  

  • 17. Water permeability of lipid membranes.
    Fettiplace R; Haydon DA
    Physiol Rev; 1980 Apr; 60(2):510-50. PubMed ID: 6992166
    [No Abstract]   [Full Text] [Related]  

  • 18. The physical state of solutes and water in living cells according to the association-induction hypothesis.
    Ling GN; Miller C; Ochsenfeld MM
    Ann N Y Acad Sci; 1973 Mar; 204():6-50. PubMed ID: 4577275
    [No Abstract]   [Full Text] [Related]  

  • 19. THE NUMERICAL SOLUTION OF THE TIME-DEPENDENT NERNST-PLANCK EQUATIONS.
    COHEN H; COOLEY JW
    Biophys J; 1965 Mar; 5(2):145-62. PubMed ID: 14268950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chemical interactions in pentachlorophenol mixtures on skin and membrane transport.
    Baynes RE; Brooks JD; Mumtaz M; Riviere JE
    Toxicol Sci; 2002 Oct; 69(2):295-305. PubMed ID: 12377978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.