These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 7436662)

  • 21. Fatty acid modification and membrane lipids.
    Wahle KW
    Proc Nutr Soc; 1983 Jun; 42(2):273-87. PubMed ID: 6351085
    [No Abstract]   [Full Text] [Related]  

  • 22. Strains of Bacillus cereus vary in the phenotypic adaptation of their membrane lipid composition in response to low water activity, reduced temperature and growth in rice starch.
    Haque MA; Russell NJ
    Microbiology (Reading); 2004 May; 150(Pt 5):1397-1404. PubMed ID: 15133101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular control of membrane properties during temperature acclimation. Fatty acid desaturase regulation of membrane fluidity in acclimating Tetrahymena cells.
    Martin CE; Hiramitsu K; Kitajima Y; Nozawa Y; Skriver L; Thompson GA
    Biochemistry; 1976 Nov; 15(24):5218-27. PubMed ID: 826266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rabbit small intestinal brush border membrane preparation and lipid composition.
    Hauser H; Howell K; Dawson RM; Bowyer DE
    Biochim Biophys Acta; 1980 Nov; 602(3):567-77. PubMed ID: 6776986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Composition and behavior of head membrane lipids of fresh and cryopreserved boar sperm.
    Buhr MM; Curtis EF; Kakuda NS
    Cryobiology; 1994 Jun; 31(3):224-38. PubMed ID: 8050268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803.
    Laczkó-Dobos H; Szalontai B
    Biochemistry; 2009 Oct; 48(42):10120-8. PubMed ID: 19788309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis.
    Bakholdina SI; Sanina NM; Krasikova IN; Popova OB; Solov'eva TF
    Biochimie; 2004 Dec; 86(12):875-81. PubMed ID: 15667937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrate starvation induces homeoviscous regulation of lipids in the cell envelope of the blue-green alga, Anacystis nidulans.
    Gombos Z; Kis M; Páli T; Vigh L
    Eur J Biochem; 1987 Jun; 165(2):461-5. PubMed ID: 3109903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath).
    Jahnke LL
    FEMS Microbiol Lett; 1992 Jun; 72(3):209-12. PubMed ID: 11537858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of dietary lipids on the composition and membrane fluidity of rat hepatocyte plasma membrane.
    Clamp AG; Ladha S; Clark DC; Grimble RF; Lund EK
    Lipids; 1997 Feb; 32(2):179-84. PubMed ID: 9075208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptational changes of fatty acid composition and the physical state of membrane lipids following the change of growth temperature in Yersinia enterocolitica.
    Nagamachi E; Shibuya S; Hirai Y; Matsushita O; Tomochika K; Kanemasa Y
    Microbiol Immunol; 1991; 35(12):1085-93. PubMed ID: 1808462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of a fluorescent probe to determine the viscosity of LM cell membranes with altered phospholipid compositions.
    Esko JD; Gilmore JR; Glaser M
    Biochemistry; 1977 May; 16(9):1881-90. PubMed ID: 192276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phospholipid metabolism during penicillinase production in Bacillus licheniformis.
    Morman MR; White DC
    J Bacteriol; 1970 Oct; 104(1):247-53. PubMed ID: 5473893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition.
    Falcone DL; Ogas JP; Somerville CR
    BMC Plant Biol; 2004 Sep; 4():17. PubMed ID: 15377388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism for adaptive modification during cold acclimation of phospholipid acyl chain composition in Tetrahymena. I. Principal involvement of deacylation-reacylation.
    Kameyama Y; Yoshioka S; Nozawa Y
    Biochim Biophys Acta; 1984 Mar; 793(1):28-33. PubMed ID: 6704411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature-induced membrane-lipid adaptation in Acanthamoeba castellanii.
    Jones AL; Hann AC; Harwood JL; Lloyd D
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):273-8. PubMed ID: 8439295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal regulation of the fatty acid composition of lipopolysaccharides and phospholipids of Proteus mirabilis.
    Rottem S; Markowitz O; Razin S
    Eur J Biochem; 1978 Apr; 85(2):445-50. PubMed ID: 206438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptation of microorganisms and their transport systems to high temperatures.
    Tolner B; Poolman B; Konings WN
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):423-8. PubMed ID: 9406426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boundary lipids and protein mobility in rhodopsin-phosphatidylcholine vesicles. Effect of lipid phase transitions.
    Davoust J; Bienvenue A; Fellmann P; Devaux PF
    Biochim Biophys Acta; 1980 Feb; 596(1):28-42. PubMed ID: 6243483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization.
    van Blitterswijk WJ; van der Meer BW; Hilkmann H
    Biochemistry; 1987 Mar; 26(6):1746-56. PubMed ID: 3593687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.