These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 7437085)
1. The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450. Ahr HJ; King LJ; Nastainczyk W; Ullrich V Biochem Pharmacol; 1980 Oct; 29(20):2855-61. PubMed ID: 7437085 [No Abstract] [Full Text] [Related]
2. Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: role of cytochrome P-450. Sipes IG; Krishna G; Gillette JR Life Sci; 1977 May; 20(9):1541-8. PubMed ID: 17803 [No Abstract] [Full Text] [Related]
3. [Formation of chloroform from carbon tetrachloride in liver microsomes, lipid peroxidation and destruction of cytochrome P-450]. Reiner O; Athanassopoulos S; Hellmer KH; Murray RE; Uehleke H Arch Toxikol; 1972; 29(3):219-33. PubMed ID: 4404917 [No Abstract] [Full Text] [Related]
4. Binding of 14 C-carbon tetrachloride to microsomal proteins in vitro and formation of CHC1 3 by reduced liver microsomes. Uehleke H; Hellmer KH; Tabarelli S Xenobiotica; 1973 Jan; 3(1):1-11. PubMed ID: 4144825 [No Abstract] [Full Text] [Related]
5. The apparent loss of cytochrome P-450 associated with metabolic activation of carbon tetrachloride. Yamazoe Y; Sugiura M; Kamataki T; Kato R Jpn J Pharmacol; 1979 Oct; 29(5):715-21. PubMed ID: 43918 [TBL] [Abstract][Full Text] [Related]
6. Self-catalysed, O2-independent inactivation of NADPH- or dithionite-reduced microsomal cytochrome P-450 by carbon tetrachloride. de Groot H; Haas W Biochem Pharmacol; 1981 Aug; 30(16):2343-7. PubMed ID: 7295345 [No Abstract] [Full Text] [Related]
7. 2-Propanol treatment induces selectively the metabolism of carbon tetrachloride to phosgene. Implications for carbon tetrachloride hepatotoxicity. Harris RN; Anders MW Drug Metab Dispos; 1981; 9(6):551-6. PubMed ID: 6120815 [No Abstract] [Full Text] [Related]
8. Enhanced hepatic microsomal activity by pretreatment of rats with acetone or isopropanol. Sipes IG; Stripp B; Krishna G; Maling HM; Gillette JR Proc Soc Exp Biol Med; 1973 Jan; 142(1):237-40. PubMed ID: 4405141 [No Abstract] [Full Text] [Related]
9. The nature of the in vitro irreversible binding of carbon tetrachloride to microsomal lipids. Villarruel MC; Díaz Gómez MI; Castro JA Toxicol Appl Pharmacol; 1975 Jul; 33(1):106-14. PubMed ID: 240222 [No Abstract] [Full Text] [Related]
10. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo. Uehleke H; Werner T Arch Toxicol; 1975 Dec; 34(4):289-308. PubMed ID: 3152 [TBL] [Abstract][Full Text] [Related]
11. Covalent binding of carbon tetrachloride metabolites to the heme moiety of cytochrome P-450 and its degradation products. Fernández G; Villarruel MC; de Toranzo EG; Castro JA Res Commun Chem Pathol Pharmacol; 1982 Feb; 35(2):283-90. PubMed ID: 7071415 [TBL] [Abstract][Full Text] [Related]
12. The mechanism of the suicidal, reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride. Manno M; De Matteis F; King LJ Biochem Pharmacol; 1988 May; 37(10):1981-90. PubMed ID: 3377806 [TBL] [Abstract][Full Text] [Related]
13. A pharmacokinetic model of anaerobic in vitro carbon tetrachloride metabolism. Andersen NJ; Waller CL; Adamovic JB; Thompson DJ; Allis JW; Andersen ME; Simmons JE Chem Biol Interact; 1996 Jun; 101(1):13-31. PubMed ID: 8665616 [TBL] [Abstract][Full Text] [Related]
14. Nuclear activation of carbon tetrachloride and chloroform. Diaz Gomez MI; Castro JA Res Commun Chem Pathol Pharmacol; 1980 Jan; 27(1):191-4. PubMed ID: 7361000 [TBL] [Abstract][Full Text] [Related]
15. Identification of dichloromethyl carbene as a metabolite of carbon tetrachloride. Pohl LR; George JW Biochem Biophys Res Commun; 1983 Dec; 117(2):367-71. PubMed ID: 6661232 [TBL] [Abstract][Full Text] [Related]
16. Proceedings: Kinetics of the binding of carbon monoxide and oxygen to microsomal cytochrome P450 and the influence of substrates. Rösen P; Stier A Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R81. PubMed ID: 4276636 [No Abstract] [Full Text] [Related]
18. Cytochrome P-450-dependent formation of reactive oxygen radicals: isozyme-specific inhibition of P-450-mediated reduction of oxygen and carbon tetrachloride. Persson JO; Terelius Y; Ingelman-Sundberg M Xenobiotica; 1990 Sep; 20(9):887-900. PubMed ID: 2122605 [TBL] [Abstract][Full Text] [Related]
19. Isoflurane enhances dechlorination of carbon tetrachloride in guinea-pig liver microsomes. Fujii K; Rahman MM; Yuge O J Appl Toxicol; 1996; 16(3):249-53. PubMed ID: 8818866 [TBL] [Abstract][Full Text] [Related]
20. Preventive effect of isoflurane on destruction of cytochrome P450 during reductive dehalogenation of carbon tetrachloride in guinea-pig liver microsomes. Fujii K Drug Metabol Drug Interact; 1997; 14(2):99-107. PubMed ID: 9893740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]