These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 7437496)
1. Two enzyme active transport in vitro with pH induced asymmetrical functional structures. II. Properties of the pump and experimental illustrations. Selegny E; Vincent JC Biophys Chem; 1980 Aug; 12(1):107-19. PubMed ID: 7437496 [No Abstract] [Full Text] [Related]
2. Two enzyme active transport in vitro with pH induced asymmetrical functional structures I. The model and its analytical treatment. Selegny E; Vincent JC Biophys Chem; 1980 Aug; 12(1):93-106. PubMed ID: 7437499 [No Abstract] [Full Text] [Related]
3. Two-enzyme active transport in vitro with pH induced asymmetrical functional structures. III. Discussions based on numerical treatments of the time-dependent evolutions. Vincent JC; Selegny E; Metayer M Biophys Chem; 1981 Oct; 14(2):159-76. PubMed ID: 7326339 [TBL] [Abstract][Full Text] [Related]
4. Rate equations of some cases of enzyme inhibition and activation--their application to sodium-activated membrane transport systems. Semenza G J Theor Biol; 1967 Apr; 15(1):145-76. PubMed ID: 6034158 [No Abstract] [Full Text] [Related]
6. Specificities of transport systems and enzymes. Berlin RD Science; 1970 Jun; 168(3939):1539-45. PubMed ID: 4316023 [No Abstract] [Full Text] [Related]
7. [Temporal oscillations in a structured enzymatic medium. Vectorial transport with space-time oscillations Analytic study]. Vincent JC; Selegny E C R Seances Acad Sci III; 1981 Jan; 292(2):173-6. PubMed ID: 6783339 [TBL] [Abstract][Full Text] [Related]
8. Active transport and binding in mitochondria. Azzone GF; Massari S Biochim Biophys Acta; 1973 Dec; 301(3):195-226. PubMed ID: 4593321 [No Abstract] [Full Text] [Related]
9. Effect of drugs on the ATP-induced and pH-gradient-driven monoamine transport by bovine chromaffin granules. Scherman D; Henry JP Biochem Pharmacol; 1980 Jul; 29(13):1883-90. PubMed ID: 7396997 [No Abstract] [Full Text] [Related]
10. Transport and accumulation of calcium in mitochondria. Lehninger AL; Reynafarje B; Vercesi A; Tew WP Ann N Y Acad Sci; 1978 Apr; 307():160-76. PubMed ID: 30375 [No Abstract] [Full Text] [Related]
11. Transient pH changes during D-lactate oxidation by membrane vesicles. Reeves JP Biochem Biophys Res Commun; 1971 Nov; 45(4):931-6. PubMed ID: 4330145 [No Abstract] [Full Text] [Related]
13. Sugar and amino acid transport in animal cells. Hopfer U Horiz Biochem Biophys; 1976; 2():106-33. PubMed ID: 6372 [TBL] [Abstract][Full Text] [Related]
14. Inclusion of L-glucose within the specificity limits of the active sugar transport system of hamster small intestine. Caspary WF; Crane RK Biochim Biophys Acta; 1968 Nov; 163(3):395-400. PubMed ID: 5721901 [No Abstract] [Full Text] [Related]
15. Effects of pH and sodium on phosphate transport across brush border membrane vesicles of small intestine. Danisi G; Murer H; Straub RW Adv Exp Med Biol; 1984; 178():173-80. PubMed ID: 6507155 [No Abstract] [Full Text] [Related]
16. Enhanced Diffusion of Enzymes that Catalyze Exothermic Reactions. Golestanian R Phys Rev Lett; 2015 Sep; 115(10):108102. PubMed ID: 26382704 [TBL] [Abstract][Full Text] [Related]
17. pH influence on enzymic activity: the involvement of two active ionized forms of either substrate or enzyme in the reaction. Mura U; Bauer C J Theor Biol; 1978 Nov; 75(2):181-8. PubMed ID: 34067 [No Abstract] [Full Text] [Related]
18. How a soluble enzyme can be forced to work as a transport system: description of an experimental design. Vincent JC; Alexandre S; Thellier M Arch Biochem Biophys; 1988 Mar; 261(2):405-8. PubMed ID: 3281586 [TBL] [Abstract][Full Text] [Related]
19. Fundamental features of proton-coupled transport. Williams RJ Biochem Soc Trans; 1977; 5(1):29-32. PubMed ID: 19322 [No Abstract] [Full Text] [Related]