These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7438288)

  • 1. Multi-step metabolic activation of benzene. Effect of superoxide dismutase on covalent binding to microsomal macromolecules, and identification of glutathione conjugates using high pressure liquid chromatography and field desorption mass spectrometry.
    Tunek A; Platt KL; Przybylski M; Oesch F
    Chem Biol Interact; 1980 Dec; 33(1):1-17. PubMed ID: 7438288
    [No Abstract]   [Full Text] [Related]  

  • 2. Multi-step metabolic activation of benzene in rat liver microsomes.
    Tunek A; Oesch F
    Adv Exp Med Biol; 1981; 136 Pt A():319-29. PubMed ID: 7344464
    [No Abstract]   [Full Text] [Related]  

  • 3. Detection and identification of sulfhydryl conjugates of rho-benzoquinone in microsomal incubations of benzene and phenol.
    Lunte SM; Kissinger PT
    Chem Biol Interact; 1983 Nov; 47(2):195-212. PubMed ID: 6652808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes.
    Sawahata T; Neal RA
    Mol Pharmacol; 1983 Mar; 23(2):453-60. PubMed ID: 6835203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the metabolism of benzene and its metabolite phenol in rat liver microsomes.
    Gilmour SK; Kalf GF; Snyder R
    Adv Exp Med Biol; 1986; 197():223-35. PubMed ID: 3766259
    [No Abstract]   [Full Text] [Related]  

  • 6. Microsomal metabolism of benzene to species irreversibly binding to microsomal protein and effects of modifications of this metabolism.
    Tunek A; Platt KL; Bentley P; Oesch F
    Mol Pharmacol; 1978 Sep; 14(5):920-9. PubMed ID: 714029
    [No Abstract]   [Full Text] [Related]  

  • 7. Formation of nontoxic reactive metabolites of p-bromophenol. Identification of a new glutathione conjugate.
    Monks TJ; Lau SS; Highet RJ
    Drug Metab Dispos; 1984; 12(4):432-7. PubMed ID: 6148209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of chlorobenzene and benzene by the reductive metabolism of lindane in rat liver microsomes.
    Baker MT; Nelson RM; Van Dyke RA
    Arch Biochem Biophys; 1985 Feb; 236(2):506-14. PubMed ID: 2578765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene.
    Smart RC; Zannoni VG
    Mol Pharmacol; 1984 Jul; 26(1):105-11. PubMed ID: 6749127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzene and phenol metabolism by mouse and rat liver microsomes.
    Schlosser PM; Bond JA; Medinsky MA
    Carcinogenesis; 1993 Dec; 14(12):2477-86. PubMed ID: 8269615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of glutathione conjugates derived from 4-ipomeanol metabolism in bile of rats by liquid chromatography-tandem mass spectrometry.
    Alvarez-Diez TM; Zheng J
    Drug Metab Dispos; 2004 Dec; 32(12):1345-50. PubMed ID: 15328249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple reactive metabolites derived from bromobenzene.
    Lau SS; Monks TJ; Gillette JR
    Drug Metab Dispos; 1984; 12(3):291-6. PubMed ID: 6145555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactivation of bisphenol A and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes.
    Schmidt J; Kotnik P; Trontelj J; Knez Ž; Mašič LP
    Toxicol In Vitro; 2013 Jun; 27(4):1267-76. PubMed ID: 23470418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone.
    Snyder R; Chepiga T; Yang CS; Thomas H; Platt K; Oesch F
    Toxicol Appl Pharmacol; 1993 Oct; 122(2):172-81. PubMed ID: 8211999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies of the in vitro metabolism and covalent binding of 14C-benzene by liver slices and microsomal fraction of mouse, rat, and human.
    Brodfuehrer JI; Chapman DE; Wilke TJ; Powis G
    Drug Metab Dispos; 1990; 18(1):20-7. PubMed ID: 1970773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolism of benzene and phenol by a reconstituted purified phenobarbital-induced rat liver mixed function oxidase system.
    Griffiths JC; Kalf GF; Snyder R
    Adv Exp Med Biol; 1986; 197():213-22. PubMed ID: 3094336
    [No Abstract]   [Full Text] [Related]  

  • 17. The use of liquid chromatography with dual-electrode electrochemical detection in the investigation of glutathione oxidation during benzene metabolism.
    Lunte SM; Kissinger PT
    J Chromatogr; 1984 Dec; 317():579-88. PubMed ID: 6530454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species and strain differences in the hepatic cytochrome P450-mediated biotransformation of 1,4-dichlorobenzene.
    Hissink AM; Oudshoorn MJ; Van Ommen B; Van Bladeren PJ
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):1-9. PubMed ID: 9221818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of 14C-toluene to covalently binding metabolites by rat liver microsomes.
    Pathiratne A; Puyear RL; Brammer JD
    Drug Metab Dispos; 1986; 14(4):386-91. PubMed ID: 2873983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluoride stimulation of microsomal benzene metabolism.
    Post GB; Snyder R
    J Toxicol Environ Health; 1983; 11(4-6):799-810. PubMed ID: 6620412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.