These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 7438288)
21. Effect of ascorbate on covalent binding of benzene and phenol metabolites to isolated tissue preparations. Smart RC; Zannoni VG Toxicol Appl Pharmacol; 1985 Feb; 77(2):334-43. PubMed ID: 3919464 [TBL] [Abstract][Full Text] [Related]
22. Mechanism of microsomal metabolism of benzene to phenol. Hinson JA; Freeman JP; Potter DW; Mitchum RK; Evans FE Mol Pharmacol; 1985 May; 27(5):574-7. PubMed ID: 3990679 [TBL] [Abstract][Full Text] [Related]
23. Induction of sister-chromatid exchanges in human lymphocytes by microsomal activation of benzene metabolites. Morimoto K; Wolff S; Koizumi A Mutat Res; 1983 Mar; 119(3):355-60. PubMed ID: 6828070 [TBL] [Abstract][Full Text] [Related]
24. Formation of muconaldehyde, an open-ring metabolite of benzene, in mouse liver microsomes: an additional pathway for toxic metabolites. Latriano L; Goldstein BD; Witz G Proc Natl Acad Sci U S A; 1986 Nov; 83(21):8356-60. PubMed ID: 3464956 [TBL] [Abstract][Full Text] [Related]
25. Investigation of the mechanism of the metabolic activation of chloramphenicol by rat liver microsomes. Identification of a new metabolite. Pohl LR; Nelson SD; Krishna G Biochem Pharmacol; 1978 Feb; 27(4):491-6. PubMed ID: 343786 [No Abstract] [Full Text] [Related]
26. In vitro formation of glutathione conjugates of the dimethylester of bilirubin. Shore LJ; Mogilevsky WS; Smith PB; Fenselau C; Odell GB Biochem Pharmacol; 1991 Oct; 42(10):1969-76. PubMed ID: 1683770 [TBL] [Abstract][Full Text] [Related]
27. Metabolic activation of 1-naphthol by rat liver microsomes to 1,4-naphthoquinone and covalent binding species. Doherty MD; Cohen GM Biochem Pharmacol; 1984 Oct; 33(20):3201-8. PubMed ID: 6487366 [TBL] [Abstract][Full Text] [Related]
29. Identification of N-acetyl-S-(2,5-dihydroxyphenyl)-L-cysteine as a urinary metabolite of benzene, phenol, and hydroquinone. Nerland DE; Pierce WM Drug Metab Dispos; 1990; 18(6):958-61. PubMed ID: 1981544 [TBL] [Abstract][Full Text] [Related]
30. Metabolism of prazosin in rat, dog, and human liver microsomes and cryopreserved rat and human hepatocytes and characterization of metabolites by liquid chromatography/tandem mass spectrometry. Erve JC; Vashishtha SC; DeMaio W; Talaat RE Drug Metab Dispos; 2007 Jun; 35(6):908-16. PubMed ID: 17353349 [TBL] [Abstract][Full Text] [Related]
31. Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans. Masubuchi N; Makino C; Murayama N Chem Res Toxicol; 2007 Mar; 20(3):455-64. PubMed ID: 17309281 [TBL] [Abstract][Full Text] [Related]
32. Metabolism of 2,6-dimethylnaphthalene by rat liver microsomes and effect of its administration on glutathione depletion in vivo. Shamsuddin ZA; Rahimtula AD Drug Metab Dispos; 1986; 14(6):724-32. PubMed ID: 2877834 [TBL] [Abstract][Full Text] [Related]
33. The mechanism of formation of o-bromophenol from bromobenzene. Monks TJ; Lau SS; Pohl LR; Gillette JR Drug Metab Dispos; 1984; 12(2):193-8. PubMed ID: 6144485 [TBL] [Abstract][Full Text] [Related]
34. Identification of 2-bromohydroquinone as a metabolite of bromobenzene and o-bromophenol: implications for bromobenzene-induced nephrotoxicity. Lau SS; Monks TJ; Gillette JR J Pharmacol Exp Ther; 1984 Aug; 230(2):360-6. PubMed ID: 6747840 [TBL] [Abstract][Full Text] [Related]
35. Enzymatic conjugation of hexachloro-1,3-butadiene with glutathione. Formation of 1-(glutathion-S-yl)-1,2,3,4,4-pentachlorobuta-1,3-diene and 1,4-bis(glutathion-S-yl)-1,2,3,4-tetrachlorobuta-1,3-diene. Dekant W; Vamvakas S; Henschler D; Anders MW Drug Metab Dispos; 1988; 16(5):701-6. PubMed ID: 2906593 [TBL] [Abstract][Full Text] [Related]
36. Addressing the metabolic activation potential of new leads in drug discovery: a case study using ion trap mass spectrometry and tritium labeling techniques. Samuel K; Yin W; Stearns RA; Tang YS; Chaudhary AG; Jewell JP; Lanza T; Lin LS; Hagmann WK; Evans DC; Kumar S J Mass Spectrom; 2003 Feb; 38(2):211-21. PubMed ID: 12577288 [TBL] [Abstract][Full Text] [Related]
37. A new method for measuring covalent binding of chemicals to cellular macromolecules. Sun JD; Dent JG Chem Biol Interact; 1980 Oct; 32(1-2):41-61. PubMed ID: 7428116 [TBL] [Abstract][Full Text] [Related]
38. Species differences in benzene hydroxylation to phenol by pulmonary and hepatic microsomes. Harper C; Drew RT; Fouts JR Drug Metab Dispos; 1975; 3(5):381-8. PubMed ID: 241619 [TBL] [Abstract][Full Text] [Related]
39. Formation of glutathione conjugates by reactive metabolites of vinylidene chloride in microsomes and isolated hepatocytes. Liebler DC; Meredith MJ; Guengerich FP Cancer Res; 1985 Jan; 45(1):186-93. PubMed ID: 3965130 [TBL] [Abstract][Full Text] [Related]
40. In vivo and in vitro binding of benzene to nucleic acids and proteins of various rat and mouse organs. Arfellini G; Grilli S; Colacci A; Mazzullo M; Prodi G Cancer Lett; 1985 Sep; 28(2):159-68. PubMed ID: 4052986 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]