BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 743891)

  • 1. The fine structure of the vegetative cells of Erythrocystis montagnei, a symbiotic red alga.
    Melchionna M; De Masi F
    Cytobios; 1978; 20(78):113-9. PubMed ID: 743891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electron microscopic study on tetrasporogenesis of the parasitic red alga Erythrocystis Montagnei (Derb. and Sol.) Silva.
    Santisi S; De Masi F
    Cytobios; 1981; 31(123-124):163-78. PubMed ID: 7326991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine structural study of the red seaweed Gymnogongrus torulosus (Phyllophoraceae, Rhodophyta).
    Estevez JM; Cáceres EJ
    Biocell; 2003 Aug; 27(2):181-7. PubMed ID: 14510236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Structure and cell division of the blue-green alga Plectonema boryanum].
    Peshkov MA; Shadrina IA
    Mikrobiologiia; 1977; 46(3):496-9. PubMed ID: 408585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of two cell signalling molecules from a symbiotic sponge that modify algal carbon metabolism.
    Grant AJ; Trautman DA; Menz I; Hinde R
    Biochem Biophys Res Commun; 2006 Sep; 348(1):92-8. PubMed ID: 16876109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the fine structure of the acidophilic hot-spring alga Cyanidium caldarium: a taxonomic approach.
    Seckbach J
    Microbios; 1972; 5(18):133-42. PubMed ID: 4206412
    [No Abstract]   [Full Text] [Related]  

  • 7. A cell signal from the coral Plesiastrea versipora reduces starch synthesis in its symbiotic alga, Symbiodinium sp.
    Grant AJ; Rémond M; Starke-Peterkovic T; Hinde R
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Aug; 144(4):458-63. PubMed ID: 16750644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages.
    Patron NJ; Inagaki Y; Keeling PJ
    Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A primaeval alga bridging the blue-green and the red algae: further biochemical and ultrastructure studies of Cyanidium caldarium with special reference to the plastid membranes.
    Seckbach J; Fredrick JF
    Microbios; 1980; 29(117-118):135-47. PubMed ID: 6457239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium drives daily reversible thallus enlargement in the marine red alga Porphyra leucosticta (Rhodophyta).
    Escassi L; Aguilera J; Figueroa FL; Fernández JA
    Planta; 2002 Mar; 214(5):759-66. PubMed ID: 11882945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis.
    Loram JE; Trapido-Rosenthal HG; Douglas AE
    Mol Ecol; 2007 Nov; 16(22):4849-57. PubMed ID: 17868294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symbiosis in Paramecium Bursaria.
    Karakashian MW
    Symp Soc Exp Biol; 1975; (29):145-73. PubMed ID: 785659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The unique features of starch metabolism in red algae.
    Viola R; Nyvall P; Pedersén M
    Proc Biol Sci; 2001 Jul; 268(1474):1417-22. PubMed ID: 11429143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin of red algae and cryptomonad nucleomorphs: A comparative phylogeny based on small and large subunit rRNA sequences of Palmaria palmata, Gracilaria verrucosa, and the Guillardia theta nucleomorph.
    Van der Auwera G; Hofmann CJ; De Rijk P; De Wachter R
    Mol Phylogenet Evol; 1998 Dec; 10(3):333-42. PubMed ID: 10051386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration.
    Dunn SR; Thomason JC; Le Tissier MD; Bythell JC
    Cell Death Differ; 2004 Nov; 11(11):1213-22. PubMed ID: 15286684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C; Brinkmann H; Petersen J
    Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and subcellular localization of kainic acid in the marine red alga Digenea simplex.
    Sakai R; Minato S; Koike K; Koike K; Jimbo M; Kamiya H
    Cell Tissue Res; 2005 Dec; 322(3):491-502. PubMed ID: 16059701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.