These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 7440549)
1. Studies of synthetic peptide analogs of the amphipathic helix. Effect of charged amino acid residue topography on lipid affinity. Kanellis P; Romans AY; Johnson BJ; Kercret H; Chiovetti R; Allen TM; Segrest JP J Biol Chem; 1980 Dec; 255(23):11464-72. PubMed ID: 7440549 [TBL] [Abstract][Full Text] [Related]
2. Interactions of synthetic peptide analogs of the class A amphipathic helix with lipids. Evidence for the snorkel hypothesis. Mishra VK; Palgunachari MN; Segrest JP; Anantharamaiah GM J Biol Chem; 1994 Mar; 269(10):7185-91. PubMed ID: 8125930 [TBL] [Abstract][Full Text] [Related]
3. Studies of synthetic peptide analogs of the amphipathic helix. Effect of charge distribution, hydrophobicity, and secondary structure on lipid association and lecithin:cholesterol acyltransferase activation. Epand RM; Gawish A; Iqbal M; Gupta KB; Chen CH; Segrest JP; Anantharamaiah GM J Biol Chem; 1987 Jul; 262(19):9389-96. PubMed ID: 3597415 [TBL] [Abstract][Full Text] [Related]
4. Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. Anantharamaiah GM; Jones JL; Brouillette CG; Schmidt CF; Chung BH; Hughes TA; Bhown AS; Segrest JP J Biol Chem; 1985 Aug; 260(18):10248-55. PubMed ID: 4019510 [TBL] [Abstract][Full Text] [Related]
6. Aromatic residue position on the nonpolar face of class a amphipathic helical peptides determines biological activity. Datta G; Epand RF; Epand RM; Chaddha M; Kirksey MA; Garber DW; Lund-Katz S; Phillips MC; Hama S; Navab M; Fogelman AM; Palgunachari MN; Segrest JP; Anantharamaiah GM J Biol Chem; 2004 Jun; 279(25):26509-17. PubMed ID: 15075321 [TBL] [Abstract][Full Text] [Related]
7. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886 [TBL] [Abstract][Full Text] [Related]
8. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Johnson JE; Rao NM; Hui SW; Cornell RB Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334 [TBL] [Abstract][Full Text] [Related]
9. Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic alpha-helixes. Mishra VK; Palgunachari MN; Datta G; Phillips MC; Lund-Katz S; Adeyeye SO; Segrest JP; Anantharamaiah GM Biochemistry; 1998 Jul; 37(28):10313-24. PubMed ID: 9665740 [TBL] [Abstract][Full Text] [Related]
10. Examination of the peptide sequence requirements for lipid-binding. Alternative pathways for promoting the interaction of amphipathic alpha-helical peptides with phosphatidylcholine. McLean LR; Hagaman KA; Owen TJ; Payne MH; Davidson WS; Krstenansky JL Biochim Biophys Acta; 1991 Oct; 1086(1):106-14. PubMed ID: 1954237 [TBL] [Abstract][Full Text] [Related]
12. pH-dependent fusion of phosphatidylcholine small vesicles. Induction by a synthetic amphipathic peptide. Parente RA; Nir S; Szoka FC J Biol Chem; 1988 Apr; 263(10):4724-30. PubMed ID: 2450874 [TBL] [Abstract][Full Text] [Related]
13. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Wieprecht T; Dathe M; Epand RM; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M Biochemistry; 1997 Oct; 36(42):12869-80. PubMed ID: 9335545 [TBL] [Abstract][Full Text] [Related]
14. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes. Mishra VK; Palgunachari MN Biochemistry; 1996 Aug; 35(34):11210-20. PubMed ID: 8780526 [TBL] [Abstract][Full Text] [Related]
15. Interaction of class A amphipathic helical peptides with phospholipid unilamellar vesicles. Gazzara JA; Phillips MC; Lund-Katz S; Palgunachari MN; Segrest JP; Anantharamaiah GM; Snow JW J Lipid Res; 1997 Oct; 38(10):2134-46. PubMed ID: 9374135 [TBL] [Abstract][Full Text] [Related]
16. Structural investigations of basic amphipathic model peptides in the presence of lipid vesicles studied by circular dichroism, fluorescence, monolayer and modeling. Mangavel C; Maget-Dana R; Tauc P; Brochon JC; Sy D; Reynaud JA Biochim Biophys Acta; 1998 May; 1371(2):265-83. PubMed ID: 9630666 [TBL] [Abstract][Full Text] [Related]
17. Effect of the arrangement of tandem repeating units of class A amphipathic alpha-helixes on lipid interaction. Mishra VK; Palgunachari MN; Lund-Katz S; Phillips MC; Segrest JP; Anantharamaiah GM J Biol Chem; 1995 Jan; 270(4):1602-11. PubMed ID: 7829491 [TBL] [Abstract][Full Text] [Related]
18. Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly. Palgunachari MN; Mishra VK; Lund-Katz S; Phillips MC; Adeyeye SO; Alluri S; Anantharamaiah GM; Segrest JP Arterioscler Thromb Vasc Biol; 1996 Feb; 16(2):328-38. PubMed ID: 8620350 [TBL] [Abstract][Full Text] [Related]
19. The structure and orientation of class-A amphipathic peptides on a phospholipid bilayer surface. Clayton AH; Sawyer WH Eur Biophys J; 1999; 28(2):133-41. PubMed ID: 10028238 [TBL] [Abstract][Full Text] [Related]
20. Roles of peptide-peptide charge interaction and lipid phase separation in helix-helix association in lipid bilayer. Shigematsu D; Matsutani M; Furuya T; Kiyota T; Lee S; Sugihara G; Yamashita S Biochim Biophys Acta; 2002 Aug; 1564(1):271-80. PubMed ID: 12101022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]