BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7440567)

  • 1. Glucagon amino groups. Evaluation of modifications leading to antagonism and agonism.
    Bregman MD; Trivedi D; Hruby VJ
    J Biol Chem; 1980 Dec; 255(24):11725-31. PubMed ID: 7440567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-conformation-activity studies of glucagon and semi-synthetic glucagon analogs.
    Hruby VJ
    Mol Cell Biochem; 1982 Apr; 44(1):49-64. PubMed ID: 6283336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of nonspecific hydrophobic interactions in the biological activity of N epsilon-acyl derivatives of glucagon. Studies of conformation, receptor binding, and adenylate cyclase activation.
    Carrey EA; Epand RM
    J Biol Chem; 1982 Sep; 257(18):10624-30. PubMed ID: 6286664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of specific trinitrophenylation of the lysine epsilon amino group of glucagon on receptor binding and adenylate cyclase activation.
    Liepnieks JJ; Epand RM
    Arch Biochem Biophys; 1983 Aug; 225(1):102-9. PubMed ID: 6311099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of amidinated glucagons.
    Wright DE; Rodbell M
    Eur J Biochem; 1980 Oct; 111(1):11-6. PubMed ID: 7439177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semisynthetic derivatives of glucagon. The contribution of histidine-1 to hormone conformation and activity.
    Flanders KC; Horwitz EM; Gurd RS
    J Biol Chem; 1984 Jun; 259(11):7031-7. PubMed ID: 6547139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semisynthetic D-His1,N epsilon-acetimidoglucagon: structure-function relationships.
    Mahrenholz AM; Flanders KC; Hoosein NM; Gurd FR; Gurd RS
    Arch Biochem Biophys; 1987 Sep; 257(2):379-86. PubMed ID: 2821912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential acid stabilities of citraconylated amino groups of glucagon. Preparation of N alpha-citraconyl glucagon and evaluation of its biological properties.
    Liepnieks JJ; Epand RM
    Biochim Biophys Acta; 1982 Oct; 707(2):171-7. PubMed ID: 6291617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semisynthetic derivatives of glucagon: (des-His1)N epsilon-acetimidoglucagon and N alpha-Biotinyl-N epsilon-acetimidoglucagon.
    Flanders KC; Mar DH; Folz RJ; England RD; Coolican SA; Harris DE; Floyd AD; Gurd RS
    Biochemistry; 1982 Aug; 21(18):4244-51. PubMed ID: 7126542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of glucagon partial agonists and antagonists.
    Gysin B; Trivedi D; Johnson DG; Hruby VJ
    Biochemistry; 1986 Dec; 25(25):8278-84. PubMed ID: 3814583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of 2-thioltryptophan-glucagon and (tryptophan-S-glucagon)2. Differences in binding to the glucagon receptor in the hepatic adenylate cyclase system.
    Wright DE; Rodbell M
    J Biol Chem; 1980 Nov; 255(22):10884-7. PubMed ID: 7430160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of the trinitrophenylation of the amino groups of glucagon on its conformational properties and on its ability to activate rat liver adenylyl cyclase.
    Epand RM; Wheeler GE
    Biochim Biophys Acta; 1975 May; 393(1):236-46. PubMed ID: 237568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographical amino acid substitution in position 10 of glucagon leads to antagonists/partial agonists with greater binding differences.
    Azizeh BY; Shenderovich MD; Trivedi D; Li G; Sturm NS; Hruby VJ
    J Med Chem; 1996 Jun; 39(13):2449-55. PubMed ID: 8691441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and isolation of a glucagon antagonist.
    Bregman MD; Hruby VJ
    FEBS Lett; 1979 May; 101(1):191-4. PubMed ID: 446735
    [No Abstract]   [Full Text] [Related]  

  • 15. The relation of predicted structure to observed conformation and activity of glucagon analogs containing replacements at positions 19, 22, and 23.
    Murphy J; Zhang WJ; Macaulay W; Fasman G; Merrifield RB
    J Biol Chem; 1987 Dec; 262(36):17304-12. PubMed ID: 3693354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of the C-terminal alpha-helical structure for glucagon's biological activity.
    Krstenansky JL; Zechel C; Trivedi D; Hruby VJ
    Int J Pept Protein Res; 1988 Dec; 32(6):468-75. PubMed ID: 2854536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic effects and cyclic AMP levels produced by glucagon, (1-N alpha-Trinitrophenylhistidine,12-homoarginine)glucagon and forskolin in isolated rat hepatocytes.
    Corvera S; Huerta-Bahena J; Pelton JT; Hruby VJ; Trivedi D; García-Sáinz JA
    Biochim Biophys Acta; 1984 Aug; 804(4):434-41. PubMed ID: 6087925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic peptide antagonists of glucagon.
    Unson CG; Andreu D; Gurzenda EM; Merrifield RB
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4083-7. PubMed ID: 3035568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New glucagon analogues with conformational restrictions and altered amphiphilicity: effects on binding, adenylate cyclase and glycogenolytic activities.
    Hruby VJ; Gysin B; Trivedi D; Johnson DG
    Life Sci; 1993; 52(10):845-55. PubMed ID: 8445980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor binding and adenylate cyclase activities of glucagon analogues modified in the N-terminal region.
    McKee RL; Pelton JT; Trivedi D; Johnson DG; Coy DH; Sueiras-Diaz J; Hruby VJ
    Biochemistry; 1986 Apr; 25(7):1650-6. PubMed ID: 3011069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.