BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 7440787)

  • 1. Gliogenesis of astrocytes and oligodendrocytes in the neocortical grey and white matter of the adult rat: electron microscopic analysis of light radioautographs.
    Kaplan MS; Hinds JW
    J Comp Neurol; 1980 Oct; 193(3):711-27. PubMed ID: 7440787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurogenesis in the 3-month-old rat visual cortex.
    Kaplan MS
    J Comp Neurol; 1981 Jan; 195(2):323-38. PubMed ID: 7251929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radioautographic evidence for slow astrocyte turnover and modest oligodendrocyte production in the corpus callosum of adult mice infused with 3H-thymidine.
    McCarthy GF; Leblond CP
    J Comp Neurol; 1988 May; 271(4):589-603. PubMed ID: 3385018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey cerebral cortex.
    Peters A; Josephson K; Vincent SL
    Anat Rec; 1991 Mar; 229(3):384-98. PubMed ID: 2024779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glial cell lineages in the rat cerebral cortex.
    Parnavelas JG
    Exp Neurol; 1999 Apr; 156(2):418-29. PubMed ID: 10328946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and differentiation of glial precursor cells in the rat cerebellum.
    Levine JM; Stincone F; Lee YS
    Glia; 1993 Apr; 7(4):307-21. PubMed ID: 8320001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin.
    Skoff RP; Price DL; Stocks A
    J Comp Neurol; 1976 Oct; 169(3):313-34. PubMed ID: 972202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal changes in the number of astrocytes, oligodendrocytes, and microglia in the visual cortex (area 17) of the macaque monkey: a stereological analysis in normal and monocularly deprived animals.
    O'Kusky J; Colonnier M
    J Comp Neurol; 1982 Sep; 210(3):307-15. PubMed ID: 7142445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell proliferation and replacement following contusive spinal cord injury.
    Zai LJ; Wrathall JR
    Glia; 2005 May; 50(3):247-57. PubMed ID: 15739189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of undernutrition on gliogenesis and glial maturation in rat corpus callosum.
    Lai M; Lewis PD; Patel AJ
    J Comp Neurol; 1980 Oct; 193(4):965-72. PubMed ID: 7430444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of the O-2A progenitor cell line CG-4 into oligodendrocytes and astrocytes following transplantation into glia-deficient areas of CNS white matter.
    Franklin RJ; Bayley SA; Milner R; Ffrench-Constant C; Blakemore WF
    Glia; 1995 Jan; 13(1):39-44. PubMed ID: 7751054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter.
    Gensert JM; Goldman JE
    J Neurobiol; 2001 Aug; 48(2):75-86. PubMed ID: 11438938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glia types inthe visual system of adult rats, their shape variability, distribution patterns, and their lightoptically visible contacts to other tissue structures.
    Leibnitz L; Bär B; Günther L; Ludwig R; Hedlich A
    J Hirnforsch; 1982; 23(2):225-38. PubMed ID: 7108201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glial framework of central white matter tracts: segmented rows of contiguous interfascicular oligodendrocytes and solitary astrocytes give rise to a continuous meshwork of transverse and longitudinal processes in the adult rat fimbria.
    Suzuki M; Raisman G
    Glia; 1992; 6(3):222-35. PubMed ID: 1478731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone.
    Luskin MB; McDermott K
    Glia; 1994 Jul; 11(3):211-26. PubMed ID: 7960027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the indusium griseum. II. A semithin light microscopic and electron microscopic study.
    Sturrock RR
    J Anat; 1978 Mar; 125(Pt 3):433-45. PubMed ID: 640951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light and electron microscopic examination of isolated neurons, astrocytes and oligodendrocytes.
    Trapp BD; Dwyer B; Bernsohn J
    Neurobiology; 1975 Oct; 5(5):235-48. PubMed ID: 1105225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo.
    Herrera J; Yang H; Zhang SC; Proschel C; Tresco P; Duncan ID; Luskin M; Mayer-Proschel M
    Exp Neurol; 2001 Sep; 171(1):11-21. PubMed ID: 11520117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proliferation of subependymal cells in the adult primate CNS: differential uptake of DNA labelled precursors.
    Kaplan MS
    J Hirnforsch; 1983; 24(1):23-33. PubMed ID: 6863903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NG2 cells generate oligodendrocytes and gray matter astrocytes in the spinal cord.
    Zhu X; Hill RA; Nishiyama A
    Neuron Glia Biol; 2008 Feb; 4(1):19-26. PubMed ID: 19006598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.