These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7441540)

  • 1. Effects of metabolic intermediates on sugar and amino acid uptake in rabbit renal tubules and brush border membranes.
    Kippen I; Klinenberg JR; Wright EM
    J Physiol; 1980 Jul; 304():373-87. PubMed ID: 7441540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dibutyryl cyclic AMP on the transport of alpha-methyl-D-glucoside and alpha-aminoisobutyric acid in separated tubules and brush border membranes from rabbit kidney.
    Kippen I; Hirayama B; Klinenberg JR; Wright EM
    Biochim Biophys Acta; 1979 Nov; 558(1):126-35. PubMed ID: 227458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border.
    Kippen I; Hirayama B; Klinenberg JR; Wright EM
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3397-400. PubMed ID: 291013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of azaserine upon the proline and methyl alpha-D-glucoside transport systems of rat renal brush-border membranes.
    Hsu BY; Marshall CM; Corcoran SM; Segal S
    Biochim Biophys Acta; 1982 Oct; 692(1):41-51. PubMed ID: 7171588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the uptake of 3-hydroxy-3-methyl-glutaric acid in newborn and adult rat kidney.
    Roth KS; Serabian M; Medow MS
    Metabolism; 1982 Apr; 31(4):406-10. PubMed ID: 6176833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between tricarboxylic acid cycle intermediates and phosphate uptake by proximal renal cells and renal brush border membranes.
    Sakhrani LM; Tessitore N; Wright SH; Varner D; Massry SG
    Miner Electrolyte Metab; 1985; 11(6):345-50. PubMed ID: 4069084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of brush border transport systems for proline and alpha-methyl-D glucoside from rat, dog, and human kidney.
    Pepe LM; McNamara PD; Foreman JW; Tomassini N; Hummeler K; Segal S
    Lab Invest; 1982 Dec; 47(6):611-7. PubMed ID: 7144141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of L-malate transport in rat renal basolateral membrane vesicles.
    Kahn AM; Branham S; Weinman EJ
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F779-84. PubMed ID: 6742128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of maleic acid on the kinetics of alpha-methyl-D-glucoside uptake by isolated rat renal tubules.
    Roth KS; Hwang SM; Segal S
    Biochim Biophys Acta; 1976 Apr; 426(4):675-87. PubMed ID: 1259989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of in vivo administration of parathyroid hormone on amino acid transport in membrane vesicles prepared from rabbit kidney tubules.
    Bidot-Lopez P; Schinbeckler B; O'Malley BC
    Physiol Chem Phys; 1982; 14(3):239-42. PubMed ID: 7185060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. alpha-Methyl-D-glucoside uptake in renal cortical slices of normal and alloxan diabetic rabbits.
    Fonteles MC; Pillion DJ; Leibach FH
    Arch Int Physiol Biochim; 1979 May; 87(2):245-52. PubMed ID: 92922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye.
    Wright SH; Krasne S; Kippen I; Wright EM
    Biochim Biophys Acta; 1981 Feb; 640(3):767-78. PubMed ID: 7213704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of succinylacetone on methyl alpha-D-glucoside uptake by the rat renal tubule.
    Roth KS; Spencer PD; Higgins ES; Spencer RF
    Biochim Biophys Acta; 1985 Oct; 820(1):140-6. PubMed ID: 4052413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders.
    Wright SH; Kippen I; Klinenberg JR; Wright EM
    J Membr Biol; 1980 Nov; 57(1):73-82. PubMed ID: 7452725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of renal fuels on uptake of PAH and uric acid by separated renal tubules of the rabbit.
    Kippen I; Klinenberg JR
    Am J Physiol; 1978 Aug; 235(2):F137-41. PubMed ID: 686176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-dependent co-transport of alpha-methyl D-glucoside across the mucosal border of rabbit descending colon.
    Ilundain A; Naftalin RJ
    Biochim Biophys Acta; 1981 Jun; 644(2):316-22. PubMed ID: 7260076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ontogeny of sugar transport in kidney.
    Roth KS; Hwang SM; Yudkoff M; Segal S
    Pediatr Res; 1978 Dec; 12(12):1127-31. PubMed ID: 745866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of 3-O-methyl D-glucose and beta-methyl D-glucoside by rabbit ileum.
    Holman GD; Naftalin RJ
    Biochim Biophys Acta; 1976 May; 433(3):597-614. PubMed ID: 1276193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gentamicin uptake by renal tubule brush border membrane vesicles.
    Lipsky JJ; Cheng L; Sacktor B; Lietman PS
    J Pharmacol Exp Ther; 1980 Nov; 215(2):390-3. PubMed ID: 7441503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.